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Abstract

We show that the S-Euclidean minimum of an ideal class is a
rational number, generalizing a result of Cerri. In the proof, we ac-
tually obtain a slight refinement of this and give some corollaries
which explain the relationship of our results with Lenstra’s notion
of a norm-Euclidean ideal class and the conjecture of Barnes and
Swinnerton-Dyer on quadratic forms. In particular, we resolve a con-
jecture of Lenstra except when the S-units have rank one. The proof
is self-contained but uses ideas from ergodic theory and topological
dynamics, particularly those of Berend.

1 Introduction

Let K be a number field of degree n = r1+2r2. Let S be a finite set of primes

containing the infinite primes S∞. Let OS denote the S-integers of K, let US
denote the S-units of K, and let NS denote the S-norm map.1 Recall that

we define OS = {ξ ∈ K | v(ξ) ≥ 0 for all v /∈ S} and US = O×S ; additionally,

the S-norm of a number ξ ∈ K is defined as NS(ξ) =
∏

v∈S |ξ|v and the

S-norm of an ideal a ⊆ OS is defined as NS(a) = |OS/a|. This setting is a

standard one in algebraic number theory (one possible reference is [12]).

2010 Mathematics Subject Classification: Primary 11H50, 13F07, 2D40; Secondary
11R04, 11H55, 54H20.
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1In cases where “S” is dropped from the notation this will mean we are using S = S∞.
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For an ideal a ⊆ OS and an element ξ ∈ K, we define

mS
a (ξ) =

1

NS(a)
inf
γ∈a

NS(ξ − γ) ,

and we set

MS
a = sup

ξ∈K
mS

a (ξ) .

Notice thatmS
a (ξ) depends upon the ideal a, but thatMS

a only depends upon

the ideal class [a]; this follows easily from the fact a = γb implies ma(ξ) =

mb(ξγ
−1) for nonzero γ ∈ K. We call MS

a the S-Euclidean minimum of the

ideal class [a].

One easily verifies that mS
a (ξ) ∈ Q for all ξ ∈ K since the infimum is

being taken over a discrete subset of Q.2 However, it is not by any means

clear whether MS
a is rational or not. When K = Q(

√
d), d > 0, and S = S∞,

the statement MS
a ∈ Q is equivalent to a classical conjecture of Barnes and

Swinnerton-Dyer, which is still unresolved. Our aim is to prove the following:

Theorem 1. If #S ≥ 3, then MS
a ∈ Q.

Cerri proved (see [9]) that MS
a ∈ Q when S = S∞, #S ≥ 3, and a =

O; our theorem generalizes his result to the S-integral setting. As we will

discuss in §3, the quantity MS
a is important in the study of norm-Euclidean

ideal classes. A priori, it is possible that there are norm-Euclidean ideal

classes with MS
a = 1. However, our results lead to:

Corollary 1. If #S ≥ 3, then an ideal class [a] of OS is norm-Euclidean

if and only if MS
a < 1.

A result closely related to the previous one (see Corollary 3) resolves a

conjecture of Lenstra except when US (modulo torsion) has rank one. In

§4 we discuss the relationship of the quantity MS
a with the conjecture of

Barnes and Swinnerton-Dyer. In the case of K = Q(
√
d), d > 0 one has

#S∞ = 2 and hence our result gives the following:

Corollary 2. “The conjecture of Barnes and Swinnerton–Dyer holds for

fundamental discriminants if we invert a single prime.”

Strictly speaking, the previous two corollaries will follow from a slight

refinement of Theorem 1 which we describe after introducing the requisite

notation (see Theorem 2).

2Given ξ ∈ K there exists d ∈ Z+ such that dξ ∈ O and hence {NS(ξ − γ)}γ∈a is
contained in NS(d)−1Z.
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2 Main idea and setup

From the definition one sees that mS
a can be viewed as a function K → R≥0

as well as a function K/a→ R≥0. As there should be no confusion, we will

denote both of these functions by mS
a .

The S-units US act on K/a by multiplication and the function mS
a :

K/a→ R≥0 is invariant under this action. The main idea is to embed K/a

into a compact metric group T where US still acts and mS
a extends naturally

to an upper semi-continuous function on T. In this setting we will be able

to study the action of the units from the point of view of ergodic theory

and topological dynamics.

We embed K diagonally into the product of its completions at the primes

in S. We will write K ⊆
∏

v∈SKv =: KS. The function NS : K → R≥0
extends to a continuous function NS : KS → R≥0, and this allows us to

define mS
a (ξ) for any ξ ∈ KS. It follows that mS

a : K → R≥0 extends to an

upper semi-continuous function mS
a : KS → R≥0.3

Finally, we define

M
S

a := sup
ξ∈KS

mS
a (ξ) .

We call M
S

a the S-inhomogeneous minimum of the ideal class [a].

The embedding K ⊆ KS induces an embedding K/a ⊆ KS/a =: T, and

mS
a induces an upper semi-continuous function mS

a : T → R≥0. Since T is

compact, this tells us that there exists ξ0 ∈ KS such that mS
a (ξ0) = M

S

a . If

we can show that there exists an element ξ0 ∈ K such that mS
a (ξ0) = M

S

a ,

then it would follow that MS
a = M

S

a ∈ Q. Indeed, we will prove the following

result from which Theorem 1 follows.

Theorem 2. Suppose #S ≥ 3. Then there exists an element ξ0 ∈ K such

that mS
a (ξ0) = M

S

a .

Although many aspects of the proof of Theorem 2 are motivated by ideas

in topological dynamics and ergodic theory (particularly those of Berend),

our account will be largely self-contained. In fact, except for a couple small

lemmas, the only outside results we appeal to are standard theorems in

number theory. However, we should mention that much has been gleaned

from studying the papers [10, 2, 3, 4, 9].

3Given a metric space X, a function f : X → R is called upper semi-continuous if
lim supx→x0

f(x) ≤ f(x0) for every x0 ∈ X. Clearly, the infimum of a family of continuous
(and hence upper semi-continuous) functions is upper semi-continuous; from this general
fact it follows immediately that mS

a is upper semi-continuous.
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Before proceeding to the proof of Theorem 2, we will discuss some ap-

plications.

3 Euclidean Ideal Classes

Lenstra introduced the following definition: We call an ideal class [a] of OS
norm-Euclidean if for every ξ ∈ K there exists γ ∈ a such that NS(ξ−γ) <

NS(a). (Recall that our norms are defined to be positive.) Notice that if

we take a = (1), then this reduces to the usual definition of the ring OS
being norm-Euclidean. One important fact is that if an ideal class [a] is

norm-Euclidean, then it generates the class group of OS; in particular, the

existence of a norm-Euclidean ideal class implies that the class group is

cyclic. (See [14] for more details.)

It is clear that MS
a < 1 implies that [a] is norm-Euclidean, and that

MS
a > 1 implies that [a] is not norm-Euclidean. In the case MS

a = 1, one

cannot draw any immediate conclusion. However, in light of Theorem 2,

provided #S ≥ 3, the condition MS
a = 1 always implies that [a] is not

norm-Euclidean; indeed, in this case, Theorem 2 implies that there exists

ξ0 ∈ K such that NS(ξ0 − γ) ≥ NS(a) for all γ ∈ a. This establishes

Corollary 1.

Define the open neighborhoods Vt := {ξ ∈ KS | NS(ξ) < t}. Lenstra

points out that [a] is norm-Euclidean if and only if K ⊆ a + VNS(a). We

quote [14] (using our notation): “It seems that in all cases in which this

condition is known to be satisfied we actually have KS = a + VNS(a). It is

unknown whether both properties are in fact equivalent.”4 We completely

answer this question when #S ≥ 3 (in the number field case) with the

following:

Corollary 3. Suppose #S ≥ 3. Then we have K ⊆ a + VNS(a) if and only

if KS = a + VNS(a).

Proof. One direction of the result is obvious. To prove the other direction,

suppose K ⊆ a + VNS(a); in other words, [a] is norm-Euclidean. In light of

Theorem 2 and Corollary 1 we see that M
S

a = MS
a < 1. It follows that for

every ξ ∈ KS there exists γ ∈ a such that NS(ξ − γ) < NS(a); this proves

KS ⊆ a + VNS(a).

4He then goes on to state the only known result in this direction. It is not important
to us here as it pertains to the case where #S ≤ 2.
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In light of the discussion in [15], we now immediately obtain the following

additional result:

Corollary 4. The question of whether [a] is norm-Euclidean is decidable

when #S ≥ 3.

In the situation where S = S∞, a = O, the analog of Corollary 4 was es-

tablished in [9] by Cerri. This result was further extended in [16] by Shapira

and Wang.5 Readers interested in reading more regarding the Euclidean al-

gorithm in number fields should consult the excellent expository article [13].

4 The Conjecture of Barnes and Swinnerton-

Dyer

Let f(x, y) = ax2+bxy+cy2 with a, b, c ∈ Z be a binary quadratic form with

discriminant ∆ = b2 − 4ac > 0. For ease of exposition, we will henceforth

write form to mean binary quadratic form. For a form f and a point P ∈ Q2,

we define

mf (P ) = inf
Q∈Z2
|f(P −Q)| ,

and we set

Mf = sup
P∈Q2

mf (P ) , M f = sup
P∈R2

mf (P ) .

Since Mλf = |λ|Mf and Mλf = |λ|M f for all λ ∈ Z, we will only consider

forms where gcd(a, b, c) = 1, which are known as primitive forms. Barnes

and Swinnerton-Dyer conjecture (see [1]) that there exists a point P0 ∈ Q2

such that mf (P0) = Mf = M f ; in particular, Mf ∈ Q.6

Fix a fundamental discriminant ∆ > 0. Let K = Q(
√

∆) be the real

quadratic field of discriminant ∆ having ring of integers O. Let a be an ideal

of O with Z-basis {α1, α2}. We can associate to a the form of discriminant

∆ given by
1

N(a)
(α1x+ α2y)(α1x+ α2y).

In fact, every primitive form of discriminant ∆ arises in this way.7 See [6]

5In particular, they give a bound on the computational complexity of MS∞
O in terms of

the degree, discriminant, and regulator of K, provided #S ≥ 3 and K is not a CM-field.
6They also conjecture that the minimum is so-called attained and isolated, but we

will ignore this part of the conjecture for the purposes of this investigation.
7One can extend the correspondence to include forms with non-fundamental discrim-

inants by considering orders other than the full ring of integers, but in this paper we are
content to restrict ourselves to forms with fundamental discriminants.
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for a classical treatment of this correspondence or [5] for a more modern

treatment.

The conjecture of Barnes and Swinnerton-Dyer (as stated above) for

fundamental discriminants is equivalent to the statement: Given an ideal

class [a] in a real quadratic field K, there exists ξ0 ∈ K such that mS∞
a (ξ0) =

M
S∞
a . Although we cannot prove this statement, since #S∞ = 2 in the

case where K = Q(
√
d), d > 0, we can prove the analogous statement

when S = S∞ ∪ {p} where p is any (finite) prime of K. This follows from

Theorem 2 and is the content of Corollary 2.

5 Preliminary Results

In this section we give a brief justification for the facts claimed in §2 and

derive a couple other basic results. The hurried reader who is willing to refer

back to this section as necessary may skip to §6.

Observe that KS is a locally compact abelian group. It is also a complete

metric space with metric d(α, β) = maxv∈S |αv−βv|v. The fact that NS(ξ) =∏
v∈S |ξv|v is continuous on KS follows immediately from the fact that each

| · |v : Kv → R is continuous.

To show that OS is discrete in KS, it suffices to show that {0} is open

in the subspace topology on OS. The set V = {α ∈ KS | NS(α) < 1} is

open in KS since NS is continuous, and, moreover, V ∩ OS = {0}. Since

OS is discrete in KS, so is a. It now follows from generalities that T is a

locally compact Hausdorff space. In fact, one can show that the metric on

KS induces a metric on T in the usual manner.

The only fact that remains to be justified is that T is compact. For this,

we will need the following standard result from algebraic number theory

(see, for example, [8]).

Strong Approximation Theorem. Suppose we are given a finite set of

primes T , elements αv ∈ Kv for each v ∈ T , and a prime w /∈ T . Then for

each ε > 0, there exists a number β ∈ K such that |αv − β|v < ε for all

v ∈ T and |β|v ≤ 1 for all v /∈ T with v 6= w.

We mention in passing that applying the previous result with T = S

tells us that K is dense in KS, which explains the notation. In what follows

we write S0 for the finite primes in S so that S = S∞ ∪ S0.

Lemma 5.1. Let (αv)v∈S ∈ KS. Then there exists γ ∈ a such that v(αv − γ) ≥ 0

for all v ∈ S0.
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Proof. By the Strong Approximation Theorem, there exists γ ∈ K such

that v(αv − γ) ≥ 0 for all v ∈ S0, v(γ) ≥ v(a ∩ O) for all finite v dividing

a ∩ O, and v(γ) ≥ 0 for all other v. This is possible since a ∩ O is not

divisible by any primes in S. One checks that this choice of γ works.

Lemma 5.2. Let F be a fundamental domain for KS∞/(a∩O). (Note that

KS∞ ' Rr1 ×Cr2 is the usual Minkowski space and a∩O is an ideal of O.)

Each element of T has a unique representative in F ×
∏

v∈S0
Ov.

Proof. Let (αv) ∈ KS. Using Lemma 5.1, choose γ ∈ a such that v(αv−γ) ≥
0 for all v ∈ S0. Choose a ∈ O ∩ a such that (αv − γ − a)v∈S∞ ∈ F . Then

αv − γ − a ∈ Ov for all v ∈ S0. Set βv = αv − γ − a ∈ F ×
∏

v∈S0
Ov. Then

(αv)− (βv) = γ + a ∈ a.

Now we show uniqueness. Suppose (αv) = (βv) + δ for some δ ∈ a with

(αv), (βv) ∈ F ×
∏

v∈S0
Ov. Then v(δ) ≥ 0 for all v ∈ S0 which implies

δ ∈ O∩a. Since (αv)v∈S∞ , (βv)v∈S∞ ∈ F and δ ∈ O∩a, we have (αv)v∈S∞ =

(βv)v∈S∞ which implies δ = 0.

Lemma 5.3. T is compact.

Proof. By the previous lemma, T is the image under the natural projection

of the compact set F ×
∏

v∈S0
Ov.

We conclude this section with another simple result that is a consequence

of Strong Approximation which will prove useful in the sequel. For each

w ∈ S, we can view Kw as a subset of KS by sending the element x ∈ Kw

to the vector ξ ∈ KS where ξw = x and ξv = 0 for v 6= w; that is, the image

of Kw in KS is zero outside the w-component.

Lemma 5.4. For each w ∈ S, we have Kw+a is dense in KS. In particular,

there are no proper closed subgroups of KS containing both Kw and a. 8

Proof. Let ξ = (ξv)v∈S ∈ KS. Fix ε > 0. Using Strong Approximation,

choose γ ∈ K such that |γ − ξv|v < ε for all v ∈ S with v 6= w, |γ|v < ε for

all finite v dividing a ∩ O, and |γ|v ≤ 1 for all v /∈ S. When ε > 0 is small

enough, this implies γ ∈ a. Additionally, ξ − γ = (ξv − γ)v∈S is ε-close to

β := ξw−γ ∈ Kw ⊆ KS. It follows that ξ is ε-close to β+γ ∈ Kw +a. Since

ε > 0 was arbitrary, there are points in Kw + a arbitrarily close to ξ.

8Keep in mind thatKw is embedded into one component and a is embedded diagonally.
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6 Outline of the Proof

Given an element ξ ∈ KS, we will write [ξ] for the class of ξ in T; namely,

[ξ] = π(ξ) where π : KS → T is the natural projection map. We begin with

two lemmas concerning the orbit structure of the action of US on T.

Lemma 6.1. For ξ ∈ KS, the following are equivalent:

1. ξ ∈ K

2. [ξ] ∈ Ttors

3. Orb([ξ]) is finite

4. [ξ] is an isolated point of Orb([ξ])

Proof. First we show (1) ⇒ (2) ⇒ (3). If ξ ∈ K, there exists n ∈ Z+ such

that nξ ∈ a and hence [ξ] ∈ Ttors. In this case uξ ∈ (1/n)a for all u ∈ US
and therefore Orb([ξ]) ⊆ π((1/n)a), which is a finite subgroup of K/a.

Now we show (3) ⇒ (1). Suppose u[ξ] = u′[ξ] in T with u 6= u′ ∈ US.

Then there exists α ∈ a such that uξ = u′ξ + α in KS. It follows that

uξv = u′ξv + α in Kv for all v ∈ S. We conclude that ξv = α/(u− u′) ∈ K
for all v and therefore ξ ∈ K.

Now we show (3) ⇔ (4). For convenience of notation let A = Orb([ξ]).

The set A is a closed subset of T and therefore compact (see Lemma 5.3).

It is now easy to see that for ξ ∈ KS one has: [ξ] is isolated in A iff Orb([ξ])

is discrete in A iff Orb([ξ]) is finite.

Lemma 6.2. Let ξ ∈ KS \ K. Then the map US → Orb([ξ]) given by

u 7→ u[ξ] is a bijection.

Proof. This follows immediately from the proof of (3)⇒ (1) in the previous

lemma.

The next lemma is easily deduced, but essential. It constitutes the nat-

ural generalization of an important observation of Cerri. In fact, we employ

the group T = KS/a precisely so that the following result will go through

in our setting:

Lemma 6.3. The set {[ξ] ∈ T | mS
a (ξ) = M

S

a } is a nonempty closed US-

invariant subset of T.

Proof. This follows from the fact that mS
a is a US-invariant, upper semi-

continuous function defined on the compact set T.
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Theorem 3. Suppose #S ≥ 3. Then every nonempty closed US-invariant

subset of T contains torsion elements.

If we can prove Theorem 3, then Theorems 2 and 1 immediately follow in

light of Lemmas 6.1 and 6.3. The proof requires the next three propositions

whose proofs we postpone until Sections 8, 9, and 10 respectively.

Definition. We refer to a nonempty US-invariant closed subset of T which

is minimal with respect to set inclusion as a US-minimal set.

Observe that by Zorn’s Lemma, every nonempty US-invariant closed sub-

set of T contains a US-minimal set.

Proposition 1. Let M be US-minimal subset of T. Then M−M is a proper

subset of T.

Recall that a CM-field is a totally complex quadratic extension of a

totally real field. Let K+ denote the maximal totally real subfield of K. In

the case where K is a CM-field we have [K : K+] = 2.

Proposition 2. Suppose K is not a CM-field or S contains a finite prime

that splits in K/K+. Let N be a closed US-invariant subset of T that contains

0 as a non-isolated point. If #S ≥ 3, then N = T.

Proposition 3. If Theorem 3 holds except in the case where K is a CM-

field and distinct primes in S lie over distinct primes in K+, then it holds

in all cases.

Proof of Theorem 3. Let M be a US-minimal subset of T. Moreover, assume

that M contains no torsion elements. Then N = M −M is a closed US-

invariant subset of T.

We show that N contains 0 as a non-isolated point. Pick [ξ] ∈M . Then

M = Orb([ξ]). By Lemma 6.1, [ξ] must be non-isolated and therefore there

is a sequence un ∈ US with the un distinct and un[ξ]→ [ξ]. Without loss of

generality, we may assume that un 6= 1 for all n. Now observe that un[ξ]− [ξ]

is a sequence of nonzero points in N converging to 0.

By Proposition 3 it suffices to prove the theorem in the situation where

Proposition 2 applies. We invoke Proposition 2 and conclude that N = T.

This contradicts Proposition 1. Thus M contains torsion elements.
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7 Character Theory and Ergodicity

Before turning to the proofs of Propositions 1,2,3, we need a few lemmas

which are consequences of the study of the character theory of KS and

T. We have tried to assume a minimal amount of background, giving the

appropriate definitions and stating the necessary facts, but some familiarity

with the duality theory of locally compact abelian groups (and local fields

in particular) will be helpful in this section.

Let G be a locally compact abelian group. A (unitary) character of G is

a continuous group homomorphism χ : G → S1. (We will always view S1

as the unit circle inside C.) The Pontryagin dual of G, denoted by G∨, is

the (abelian) multiplicative group consisting of all the characters of G. It

is locally compact when endowed with the topology of uniform convergence

on compact sets.

We are interested in the characters of T. However, since any character

of T may be viewed as a character of KS that is trivial on a, we will first

consider characters of KS. (Note that another way to view the previous

sentence is that we have an injection T∨ ↪→ K
∨
S .) The group KS is self-dual

since it is a product of local fields. We now construct an explicit nontrivial

character of KS that will facilitate subsequent arguments.

7.1 Constructing a character of KS

For each v ∈ S, one can define a nontrivial local character φv : Kv → S1

in a natural way. If v is real, we set φv(x) = e2πix, and if v is complex, we

set φv(z) = e2πi(z+z). In the case where v is a finite prime, we define φv(α)

to be the exponential of 2πi times the the “polar part” of TrKv/Qp(α).9

Then ψ =
∏

v∈S φv is a non-trivial character of KS and we have the explicit

isomorphism KS → K
∨
S given by ξ 7→ ψξ; here ψξ(η) = ψ(ξη).

Since OS is a proper closed subgroup of KS there is a nonzero character

φ of KS that is trivial on OS. By duality, φ = ψρ for some ρ ∈ KS. Therefore

(1) φ(ξ) =
∏
v∈S

φv(ρvξv) .

As before we have an explicit isomorphism KS → K
∨
S given by ξ 7→ φξ

where φξ(η) = φ(ξη). To completely justify this, one should check that

ρv 6= 0 for all v ∈ S. Suppose it were the case that ρw = 0 for some w. Then

9Here p is the rational prime lying under v, and the polar part of an element of Qp is
the element of Q/Z defined by the (non-unique) decomposition Qp = Z[1/p] + Zp.
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we would have that kerφ contains both Kw and OS which implies that φ is

the trivial character (by an application Lemma 5.4 with a = OS), a clear

contradiction. We will not need to determine the ρv; it will be enough to

know that they are all nonzero.

For the remainder of the paper, φ will refer to this particular

fixed character of KS. Likewise, the notations φξ and φv will refer

to the characters constructed here. Notice that φ depends upon the

number field K and set of primes S, but it does not depend upon the choice

of a.

7.2 The dual of T

Definition. Given a subset E ⊆ KS, we define its complement:

E⊥ = {ξ ∈ KS | φ(ξE) = 1} .

It is an easy exercise to show that if E is a subgroup (or OS-submodule)

of KS, then so is E⊥.

Lemma 7.1. The map a⊥ → T∨ given by α 7→ φα is an isomorphism of

topological groups.

Proof. Every character of T may be viewed as a character of KS that is

trivial on a. Every character of KS is of the form φξ for some ξ ∈ KS.

Finally, a character φξ is trivial on a if and only if ξ ∈ a⊥.

To make the previous result useful, one would like a better description of

a⊥.

Lemma 7.2. If b is a fractional ideal of OS, then so is b⊥. Moreover

b⊥ = b−1O⊥S . 10

Proof. Since φ(OS) = 1 we have OS ⊆ O⊥S . We show that O⊥S /OS is finite.

First, since O⊥S is dual to the compact group KS/OS (by the previous

lemma) we know that O⊥S is discrete. It follows that O⊥S /OS is a discrete

subspace of the compact space KS/OS and therefore finite. If we set d =

|O⊥S /OS|, then this gives dO⊥S ⊆ OS and therefore O⊥S is contained in K.

In light of previous comments, it now follows easily that O⊥S is a fractional

ideal of OS. Finally, given that b and O⊥S are fractional ideals, it is easy to

show that b⊥ = b−1O⊥S .

10Here O⊥S plays the role of the inverse different D−1. In particular, when S = S∞ one
can take φ =

∏
v∈S φv and we have O⊥S = D−1.
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7.3 The action of the units is ergodic

Definition. Let G be a compact topological group with normalized Haar

measure µ. An automorphism σ : G → G is ergodic if σ(E) = E implies

µ(E) = 0 or µ(E) = 1 for every measurable set E.

Lemma 7.3 (Halmos). A (continuous) automorphism of a compact abelian

group G is ergodic if and only if the induced automorphism on the character

group G∨ has no finite orbits (other than the trivial one).

Proof. The proof is a one page argument using Pontryagin duality and

Fourier series. See [11] for the details.

Lemma 7.4. If u ∈ US is not a root of unity, then the automorphism of T
given by [ξ] 7→ u[ξ] is ergodic.

Proof. We will use Lemma 7.3. Since any character of T may be viewed as a

character of KS that is trivial on a, we will consider characters of KS. One

checks that the action of multiplication by US induces the action uφξ = φuξ

on K
∨
S .

Now let n denote a nonzero integer. Using duality, we have unφξ = φξ ⇒
φunξ = φξ ⇒ unξ = ξ ⇒ (un− 1)ξ = 0⇒ un = 1 or ξ = 0. By hypothesis, u

is not a root of unity. Hence the only solution to unχ = χ is when χ is the

trivial character.

7.4 Convergence of subgroups

Definition. Let G be a locally compact abelian group. For a subgroup H

of G, we define the annihilator of H in G∨ to be

A(G∨, H) = {χ ∈ G∨ | χ(H) = 1} .

Lemma 7.5 (Berend). Let G be a compact abelian metric group. A sequence

Gn of closed subgroups of G satisfies Gn → G in the Hausdorff metric if and

only if for every nonzero χ ∈ G∨ we have χ /∈ A(G∨, Gn) for sufficiently

large n.

Proof. The proof is half a page and uses the Haar measure and integral on

the groups involved. See [2] for the details.

Lemma 7.6. Suppose L is a subgroup of KS. Let u ∈ US. If unπ(L) 6→ T,

then there exists nonzero α ∈ K and an increasing sequence nk ∈ Z+ such

that φ(unkαL) = 1 for all k. 11

11Actually α lies in the fractional ideal a⊥, but we won’t need this.
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Proof. Suppose unπ(L) 6→ T. Then Lemma 7.5 says that there exists a

nonzero χ ∈ T∨ and an increasing sequence nk ∈ Z+ such that χ(unkπ(L)) = 1

for all k. Viewing χ as a character on KS and using duality (Lemma 7.1),

we know there exists a nonzero α ∈ a⊥ so that χ([ξ]) = φα(ξ) = φ(αξ) for

all ξ ∈ KS. This leads to φ(unkαL) = 1 for all k.

8 Proof of Proposition 1

Lemma 8.1. Let U be a finite index subgroup of US, and Λ be a closed

U-invariant subset of T with nonempty interior. If #S ≥ 2, then Λ = T.

Proof. First observe that Λ has nonzero measure because it has nonempty

interior. The group U is of finite index in US and therefore rank(U) =

rank(US) = #S − 1 ≥ 1, which implies that U contains a unit which is not

a root of unity. Now Lemma 7.4 implies that Λ is dense in T, giving the

result.

In order to prove the proposition, we first give a construction and a

lemma. For the remainder of this section, let M be a US-minimal subset of

T. It suffices to show that M −M = T implies M = T, as clearly T is not

US-minimal. Hence we assume that M −M = T. We will write ξ, η for an

element of KS as well as the corresponding element of T; that is, we will

drop the brackets from the expressions [ξ],[η].

Construction. Define U (n) = (US)n! so that U (n) ⊆ (US)n and US = U (1) ⊇
U (2) ⊇ U (3) ⊇ . . . ; choose a sequence of subsets M = M (1) ⊇ M (2) ⊇ . . .

so that M (k) is U (k)-minimal. Finally, define the set M∞ = ∩kM (k); observe

that M∞ is closed and nonempty since T is compact.

Lemma 8.2. Given ξ ∈ K, we have ξ + η ∈M for all η ∈M∞.

Proof. Let ξ ∈ K. First we show that there exists η′ ∈M∞ so that ξ+ η′ ∈
M . Since Orb(ξ) is finite, there exists N ∈ Z+ such that (US)Nξ = {ξ} and

hence U (N)ξ = {ξ}. For ease of notation, set U ′ = U (N) and M ′ = M (N).

Since U ′ has finite index in US, we have US/U ′ = {a1U ′, a2U ′, . . . , a`U ′} for

ak ∈ US with a1 = 1.

We define the closed sets Λi = M − aiM ′ for i = 1, . . . , `. We observe

∪`i=1aiM
′ = M as the former set is closed and US-invariant and clearly

contained in the latter set. Since M −M = T by hypothesis, this leads to

∪`i=1Λi = T. It is now easy to see that Λj must have nonempty interior for

some j. Since Λj is closed and U ′-invariant, Lemma 8.1 gives Λj = T.
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It follows that there exists η ∈ ajM ′ such that ajξ+η ∈M and therefore

ξ + a−1j η = a−1j (ajξ + η) ∈ M . It is plain that η′ := a−1j η ∈ M ′. We have

shown that there exists η′ ∈ M ′ such that ξ + η′ ∈ M . Now observe that

U ′(ξ + η′) ⊆ M , and since U ′η′ = M ′ and U ′ξ = {ξ}, we have ξ + η ∈ M
for all η ∈M ′.

Proof of Proposition 1. Fix η ∈ M∞. We will show that M − η = T from

which M = T immediately follows. Since K is dense in T, it suffices to show

that K ⊆ M − η. Let ξ ∈ K be arbitrary. The previous lemma says that

ξ + η ∈M . The result follows.

9 Proof of Proposition 2.

The following standard result in algebraic number theory will be helpful.

If one was forced to attach names to it, the following might be called the

Dirichlet–Minkowski–Hasse–Chevalley Unit Theorem.

S-Unit Theorem. For every w ∈ S there exists ε ∈ US such that |ε|v < 1

for all v ∈ S with v 6= w. Moreover, choosing εw as above for each w ∈
S yields a set {εw}w∈S which, after any one element is discarded, forms

an independent set of units (modulo torsion) and generates a finite index

subgroup of US; in particular rank(US) = #S − 1.

The following lemma allows us to locate points that “live in a single

component”.

Lemma 9.1. Suppose #S ≥ 2. Let N be a closed US-invariant subset of

KS that contains 0 as a non-isolated point. For each w ∈ S, the set N ∩Kw

contains a nonzero point.

Proof. By hypothesis, there is a sequence ξn ∈ N , ξn 6= 0, with ξn → 0. We

will write ξn = (ξn,v)v∈S. By the S-Unit Theorem there exists a unit u ∈ US
such that |u|v < 1 for all v 6= w, and hence C := |u|w > 1. Define

A =
{

(αv)v∈S ∈ KS : |αw|w ≥ 1 , |αv|v ≤ C ∀v ∈ S
}
.

For all sufficiently large m we have |ξm,v|v ≤ 1 for all v ∈ S and hence there

exists a jm ∈ Z+ such that ujmξm ∈ A. Since A is compact there is a limit

point η of this sequence; η ∈ A and hence η 6= 0. Since N is US-invariant

and closed we have η ∈ N . Finally, for all v 6= w we have |u|v < 1 which

implies |ujmξm,v|v → 0 and hence η ∈ Kw.
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9.1 K has a real embedding

Given what we have shown up to this point, it is now quite easy to establish

Proposition 2 in the case where K has a real embedding. This makes use of

the following fact:

Lemma 9.2. Suppose K ⊆ R is a number field. If rank(US) ≥ 2, then US
is dense in R.

This result is well-known and not hard to establish, but we prove it here

for the sake of completeness and also because it motivates what we do in the

general case. We will need the following well-known result in Diophantine

approximation (see, for example, [7]).

Kronecker’s Theorem. Let α1, . . . , αn ∈ R. Then

{(mα1, . . . ,mαn) | m ∈ Z}

is dense in Rn/Zn iff 1, α1, . . . , αn are linearly independent over Q.

Lemma 9.2 follows immediately from:

Lemma 9.3. Let a, b ∈ R+. Suppose a and b are multiplicatively indepen-

dent. Then {anbm | n,m ∈ Z} is dense in R+.

Proof. Taking the logarithm to the base a of anbm gives m + nα where

α = log b/ log a. Thus it suffices to show that {m+ nα | m,n ∈ Z} is dense

in R. But since a, b are multiplicatively independent, we know that α is

irrational. Thus {nα | n ∈ Z} is dense in R/Z by Kronecker’s Theorem.

The result follows.

Proof of Proposition 2 when K has a real embedding. Set Ñ = π−1(N). Then

Ñ is a closed US-invariant subset of KS that contains 0 as a non-isolated

point. Let w be a real place and apply Lemma 9.1 to Ñ . This gives an

element x ∈ R = Kw ⊆ KS such that x ∈ Ñ , x 6= 0. Lemma 9.2 tells us

that US is dense in R and hence {ux | u ∈ US} is dense in R; it follows that

Ñ contains R. Now Lemma 5.4 gives Ñ = KS and hence N = T.

At this junction, we point out that we have completely justified Theo-

rem 3, and hence all the results of §1,2,3, in the case where K has a real

embedding. In particular, this is enough to establish Corollary 2. However,

there is more work to be done to establish our results in the case where K

is totally complex. We don’t seem to get any additional mileage out of the

assumption that all the embeddings are complex, so we will simply work

with number fields that have at least one complex embedding.
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9.2 K has a complex embedding

We recall the following standard definition.

Definition. We call a number field K a CM-field if either of the two equiv-

alent conditions are satisfied:

1. K is a totally complex quadratic extension of a totally real field.

2. There is a subfield F of K with rank(UF ) = rank(UK).

The equivalence of the two definitions follows from Dirichlet’s Unit The-

orem (or the S-Unit Theorem with S = S∞). We write K+ for the maxi-

mal totally real subfield of K. In the case where K is a CM-field we have

[K : K+] = 2.

Lemma 9.4. Suppose K ⊆ C is a number field with K 6⊆ R. If K is not a

CM-field, then there exists u ∈ U such that un /∈ R for all nonzero n ∈ Z.

Proof. Suppose that for every u ∈ U there exists n ∈ Z+ such that un ∈ R.

It follows that there must exists N ∈ Z+ such that UN ⊆ R. If K 6⊆ R, this

implies Q(UN) 6= K which forces K to be a CM-field.

Lemma 9.5. Suppose K ⊆ C is a number field with K 6⊆ R. If K is a CM-

field and S contains a finite prime that splits in K/K+, then there exists

u ∈ US such that un /∈ R for all nonzero n ∈ Z.

Proof. Let P be a finite prime in S that splits in K/K+. Let h denote the

class number of K. Then define u ∈ O by (u) = Ph. It is plain that u ∈ US
since v(u) = 0 for all v /∈ S. By way of contradiction, suppose un ∈ R for

some nonzero n ∈ Z. Then we would have un ∈ K+ and (un) = Phn in K.

Since P lies above two distinct primes in K+, this is impossible.

In what follows, we will write [x] to denote the floor of x, and write

x = [x] + {x} so that {x} denotes the fractional part of x. We will also use

the notation ‖x‖ = infy∈Z |x− y|.

Lemma 9.6. Suppose α, β ∈ R and α /∈ Q. Then there exists r, s ∈ Z with

r > 0 such that {(mα,mβ) | m ∈ Z} is dense in {(rt, st) | t ∈ R} when

they are both viewed as subsets of R2/Z2.

Proof. If {1, α, β} is linearly independent over Q then the result follows

from Kronecker’s Theorem (with n = 2). Otherwise we have aα+bβ+c = 0

with a, b, c ∈ Z, not all zero; we must have b 6= 0 lest we contradict the fact
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that α /∈ Q, and, without loss of generality, we may assume that b > 0.

Pick t ∈ R and let ε > 0 be given. Pick δ > 0 so that |a|δ, |b|δ < ε.

Applying Kronecker’s Theorem (with n = 1) we may choose m ∈ Z so

that ‖mα − t‖ < δ. It follows that ‖mbα − bt‖ < |b|δ < ε. Also we have

bβ = −aα − c which implies mbβ = −a(mα − t) − at − mc . Therefore

‖mbβ + at‖ < |a|δ < ε. It follows that (mbα,mbβ) is ε-close to (bt,−at) in

R2/Z2.

The following result says that in our situation the closure of US contains

a nice spiral or concentric circles. It is a little complicated to state, but it

plays the same role as Lemma 9.2.

Lemma 9.7. Suppose K ⊆ C and K 6⊆ R. Suppose K is not a CM-field or

S contains a finite prime that splits in K/K+. If #S ≥ 3 then either:

1. US ⊇ {zt | t ∈ R} where z ∈ C \ R, |z| > 1

2. US ⊇ {xnzt | t ∈ R, n ∈ Z} where z ∈ C \ R, |z| = 1, x ∈ R, x > 1

Proof. First, suppose there exists u ∈ US with |u| = 1 which is not a root of

unity. In this case, {um | m ∈ Z} is dense in the unit circle. Using the S-Unit

Theorem we may choose v ∈ US with |v| > 1. We see that {umvn | m,n ∈ Z}
is dense in {|v|nut | t ∈ R, n ∈ Z}. In this case, conclusion 2 holds with

z = u and x = |v|. Hence we may assume that no elements of US other than

roots of unity are unimodular.

Since rank(US) = #S−1 ≥ 2, we know that US contains two independent

units u and v. Write u = |u|e2πiθ and v = |v|e2πiϕ, where |u|, |v| 6= 1. Given

our hypotheses, we may assume that θ /∈ Q (see Lemmas 9.4 and 9.5).

Without loss of generality, we may assume |u| > 1 by replacing u with u−1

if necessary.

Set α = log |v|/ log |u| and β = ϕ − αθ. Observe that α is irrational;

if it was the case that α = a/b, then uav−b would be a unimodular unit

which is not a root of unity. Choose r, s as in the previous lemma. Set

z = |u|re2πi(rθ+s). Choose δ > 0 small enough so that {rt} = rt for all

t ∈ [0, δ]. Since US is a multiplicative group, to prove the lemma it suffices

to show that US ⊇ {zt | 0 < t < δ}.
Fix t ∈ (0, δ). We construct sequences nk and mk so that unkvmk → zt.

By our choice of r, s, there is a sequence mk so that (mkα,mkβ) converges

to (rt, st) in R2/Z2; it follows that {mkα} → {rt} and that mkβ converges

to st in R/Z. Set nk = −[mkα] so that nk + mkα → rt. It follows that
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|u|nk |v|mk → |u|rt. Now observe that

nkθ +mkϕ = {mkα}θ +mkβ ,

which converges (modulo 1) to rtθ + st. It follows that

unkvmk → |u|rte2πi(rθ+s)t = zt .

Proof of Proposition 2. Set Ñ = π−1(N). Then Ñ is a closed US-invariant

subset of KS that contains 0 as a non-isolated point. Pick a complex place

of K and apply Lemma 9.1 to Ñ . (Since we have already proved the result

when K has a real place, we may certainly assume that K has a complex

place.) This gives a nonzero element a ∈ C ⊆ KS such that a ∈ Ñ . In

what follows, distances between sets and convergence of sets will always be

measured using the standard Hausdorff distance.

Claim 1: There exists a sequence of (compact) arcs An and line segments

Ln which lie in C ⊆ KS with the following properties:

An ⊆ Ñ , d(Ln, An)→ 0 , length(Ln)→∞

We apply Lemma 9.7 and obtain one of two possible conclusions (see the

statement of the lemma). First, we assume that conclusion 1 holds. (When

conclusion 2 holds, the proof will be similar.) We have that US contains

{zt | t ∈ R} for some z ∈ C \ R with |z| > 1. Therefore Ñ contains the

spiral {azt | t ∈ R} in C. The arcs An we construct will be subarcs of this

spiral and are therefore all automatically contained in Ñ . Let δn > 0 be a

sequence of real numbers with δn → 0 to be chosen later. Define the arc:

An = {azt : t ∈ [n, n+ δn]} .

Let Ln denote the corresponding line segment which has the same endpoints.

Namely,

Ln =
{
azn

[
1 + λ(zδn − 1)

]
: λ ∈ [0, 1]

}
.

For λ ∈ [0, 1] we write t = n+ δnλ and, using calculus, we obtain:12

An(λ)− Ln(λ) = azn
[
(zλδn − 1)− λ(zδn − 1)

]
= azn

[
Log2 z

2
λ(λ− 1)δ2n +O(δ3n)

]
12Log will denote the principal branch of the logarithm.
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Thus there are constants C1, C2 > 0 such that for n sufficiently large, we

have:

d(An, Ln) ≤ C1|z|nδ2n

length(Ln) = |a||z|n|zδn − 1|
≥ C2|z|nδn

Choose δn > 0 with |z|nδ2n → 0 but |z|nδn →∞ so that d(An, Ln)→ 0 and

length(Ln)→∞. This completes the proof of the claim in this case.

Now we suppose that conclusion 2 of Lemma 9.7 holds, so that Ñ con-

tains {axnzt | t ∈ R, n ∈ Z}; here z ∈ C \ R, |z| = 1, x ∈ R, x > 1. This

time we use:

An = {axnzt : t ∈ [0, δn]}

Ln =
{
axn

[
1 + λ(zδn − 1)

]
: λ ∈ [0, 1]

}
For λ ∈ [0, 1] we write t = δnλ and find:

An(λ)− Ln(λ) = axn
[
(zλδn − 1)− λ(zδn − 1)

]
Hence there are constants C1, C2 > 0 such that for n sufficiently large, we

have:

d(An, Ln) ≤ C1x
nδ2n , length(Ln) ≥ C2x

nδn

As before we choose δn appropriately and the claim follows.

Claim 2: There is a line L ⊆ C ⊆ KS passing through the origin such that

[ξ] + π(L) ⊆ N for some ξ ∈ KS.

We can think of each line segment Ln (given by the previous claim) as a

triple (xn, yn, zn) ∈ C× S1 × R+ which represents the midpoint, direction,

and length of the segment. Namely,

Ln = {xn + tyn : −zn ≤ 2t ≤ zn} .

(The choice of yn ∈ S1 in this representation is not unique, but this won’t

affect the argument.) By passing to a subsequence, we may assume that

π(xn) → [ξ] for some [ξ] ∈ T and yn → y for some y ∈ S1; we have

zn →∞ by what we have already shown. Therefore, for each t ∈ R we have

π(xn + tyn)→ [ξ] + π(ty).

Let L denote the line corresponding to the triple (0, y,∞) which passes

through the origin in the direction of y; namely,

L = {t y | t ∈ R} .
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We show that [ξ] + π(L) ⊆ N . Let η ∈ [ξ] + π(L) be arbitrary and ε > 0 be

given. For n sufficiently large, we have

d(η,N) ≤ d(η, π(An)) ≤ d(η, π(Ln)) + d(π(Ln), π(An)) < ε .

Since N is closed, we obtain η ∈ N . This proves the claim.

Claim 3: There is a unit u ∈ US such that unπ(L)→ T.

Pick u ∈ US so that un /∈ R for all n ∈ Z+ (see Lemmas 9.4 and 9.5).

By way of contradiction, suppose unπ(L) 6→ T. In light of Lemma 7.6 there

exists a nonzero α ∈ K and a strictly increasing sequence of positive integers

nk so that φ(unkαL) = 1 for all k. Fix an arbitrary k ∈ Z+. We have

φ(unkαty) = 1 for all t ∈ R. Since y ∈ C ⊆ KS and the local character

is φw(z) = e2πi(z+z) (see Equation 1), this leads to 2<(unkty′) ∈ Z for all

t ∈ R where we define y′ := ρwαy ∈ C ⊆ KS. Because y′ 6= 0, it follows

that <(unky′) = 0. Now we see that un2−n1 ∈ R. This contradiction proves

the claim.

By Claim 2 and the fact that N is closed, we have [ξ] + π(L) ⊆ N . By

Claim 3, we have unπ(L) → T. Choose a subsequence so that unk [ξ] → [η]

for some [η] ∈ T. Therefore unk([ξ] + π(L)) = unk [ξ] + unkπ(L) → [η] + T.

Since N is closed and US-invariant, we conclude [η] + T ⊆ N which implies

N = T.

10 Proof of Proposition 3

Suppose Theorem 3 holds except in the case where K is a CM-field and

distinct primes in S lie over distinct primes in K+. We will show it holds

in the remaining cases.

Let K be a CM-field with totally real subfield K+. We assume that

distinct primes in S lie over distinct primes in K+. Let S+ denote the set of

all primes in K+ (including the infinite ones) lying under primes in S. Given

our hypotheses, no finite primes of S are split in K/K+ and #S = #S+.

For ease of notation, we will write US = UK,S and US+ = UK+,S+ . Now we

proceed to the proof proper.

Proof of Proposition 3. Since US+ is contained in US, it suffices to prove that

every nonempty closed US+-invariant subset of T contains torsion elements.

First we consider what happens locally. Choose v ∈ S+. By our hy-

pothesis, there is exactly one prime w ∈ S lying above v. In this case, we
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have the inclusion K+
v ⊆ Kw (with [Kw : K+

v ] = 2) and the isomorphism

Kw/K
+
v ' K+

v . (Let {1, θ} be a basis for K/K+; then {1, θ} is also a basis

for Kw/K
+
v and the aforementioned isomorphism is the one that sends the

coset represented by x+ yθ to the element y.) The multiplication action of

US+ on Kw induces an action on K+
v via mapping Kw → Kw/K

+
v ' K+

v ; one

checks that this is just the usual multiplication action so that in subsequent

arguments we won’t be dealing with two different actions.

In light of the inclusions of local fields discussed above, we have an

inclusion K
+

S+ ⊆ KS and an isomorphism KS/K
+

S+ ' K
+

S+ . If we define

a+ = a ∩ K+ and T+ = K
+

S+/a+, then this leads to an exact sequence of

compact abelian groups:

(2) 0→ T+ → T→ T/T+ → 0

We have that US+ acts on T and T+ and this leads to an action of US+

on T/T+. Moreover, Theorem 3 applies to K+ and hence every nonempty

US+-invariant subset of T+ contains torsion elements. We will show that the

same holds for T/T+ and hence for T.

The situation is summarized by the following commutative diagram:

0

��

0

��

0

��
0 // a+ //

��

a //

��

a/a+ //

��

0

0 // K
+

S+
//

��

KS
//

��

KS/K
+

S+
//

��

0

0 // T+ //

��

T //

��

T/T+ //

��

0

0 0 0

The isomorphism KS/K
+

S+ ' K
+

S+ carries a/a+ to a fractional ideal b and

we obtain the isomorphic exact sequences:

0 // a/a+ //

��

�O

KS/K
+

S+
//

��
�O

T/T+ //

��
�O

0

0 // b // K
+

S+
// T+
∗

// 0

In light of previous comments, the induced action of US+ on T+
∗ = K

+

S+/b is

just the usual multiplication action. Here we have written T+
∗ to emphasize
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that it is potentially different from T+ since the quotient is by a different

ideal. In any case, Theorem 3 applied to K+ tells us that every nonempty

closed US+-invariant subset of T+
∗ contains torsion elements; hence the same

holds for T/T+.

Finally, we use what we have shown to complete the proof. Reconsidering

the exact sequence (2), we note that the desired result holds for both T+ and

T/T+. Let N be a nonempty closed US+-invariant subset of T. Applying the

result for T/T+, we have that π(N) ⊆ T/T+ contains torsion elements which

implies13 that mN∩T+ 6= ∅ for some m ∈ Z+. Since the set mN∩T+ has the

property in question, we apply the result for T+ to conclude that mN ∩T+

contains torsion elements. It follows that N contains torsion elements.

Acknowledgements

This author would like to thank Hendrik Lenstra for his helpful suggestions

and encouragement, and Mary Flahive and Tom Schmidt for many helpful

discussions. This research was partially supported by a faculty development

summer grant from Ursinus College.

References

[1] E. S. Barnes and H. P. F. Swinnerton-Dyer. The inhomogeneous min-

ima of binary quadratic forms. II. Acta Math., 88:279–316, 1952.

[2] Daniel Berend. Multi-invariant sets on tori. Trans. Amer. Math. Soc.,

280(2):509–532, 1983.

[3] Daniel Berend. Minimal sets on tori. Ergodic Theory Dynam. Systems,

4(4):499–507, 1984.

[4] Daniel Berend. Multi-invariant sets on compact abelian groups. Trans.

Amer. Math. Soc., 286(2):505–535, 1984.

[5] Manjul Bhargava. Higher composition laws. I. A new view on

Gauss composition, and quadratic generalizations. Ann. of Math. (2),

159(1):217–250, 2004.

[6] Duncan A. Buell. Binary quadratic forms. Springer-Verlag, New York,

1989. Classical theory and modern computations.

13Here π denotes the projection π : T → T/T+ which is different than the previous
usage of this notation.



On the S-Euclidean minimum of an ideal class 23

[7] J. W. S. Cassels. An introduction to Diophantine approximation. Cam-

bridge Tracts in Mathematics and Mathematical Physics, No. 45. Cam-

bridge University Press, New York, 1957.

[8] J. W. S. Cassels. Global fields. In Algebraic Number Theory (Proc.

Instructional Conf., Brighton, 1965), pages 42–84. Thompson, Wash-

ington, D.C., 1967.

[9] Jean-Paul Cerri. Inhomogeneous and Euclidean spectra of number

fields with unit rank strictly greater than 1. J. Reine Angew. Math.,

592:49–62, 2006.

[10] Harry Furstenberg. Disjointness in ergodic theory, minimal sets, and a

problem in Diophantine approximation. Math. Systems Theory, 1:1–49,

1967.

[11] Paul R. Halmos. On automorphisms of compact groups. Bull. Amer.

Math. Soc., 49:619–624, 1943.

[12] Serge Lang. Algebraic number theory, volume 110 of Graduate Texts in

Mathematics. Springer-Verlag, New York, second edition, 1994.

[13] Franz Lemmermeyer. The Euclidean algorithm in algebraic number

fields. Exposition. Math., 13(5):385–416, 1995.

[14] Hendrik W. Lenstra, Jr. Euclidean ideal classes. In Journées

Arithmétiques de Luminy (Colloq. Internat. CNRS, Centre Univ. Lu-

miny, Luminy, 1978), volume 61 of Astérisque, pages 121–131. Soc.
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