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Abstract. Let K be a cyclic number field of prime degree `. Heilbronn showed

that for a given ` there are only finitely many such fields that are norm-

Euclidean. In the case of ` = 2 all such norm-Euclidean fields have been
identified, but for ` 6= 2, little else is known. We give the first upper bounds

on the discriminants of such fields when ` > 2. Our methods lead to a simple

algorithm which allows one to generate a list of candidate norm-Euclidean
fields up to a given discriminant, and we provide some computational results.

1. Introduction

Let K be a number field with ring of integers OK , and denote by N = NK/Q
the absolute norm map. For brevity, we will sometimes use the term field to mean
a number field. We call a number field K norm-Euclidean if for every α, β ∈ OK ,
β 6= 0, there exists γ ∈ OK such that |N(α − γβ)| < |N(β)|. In the quadratic
setting, it is known that there are only finitely many norm-Euclidean fields and
they have been identified; namely, a number field of the form K = Q(

√
d) with d

squarefree is norm-Euclidean if and only if

d = −1,−2,−3,−7,−11, 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73 .

In his third and final paper on the Euclidean algorithm (see [13]), Heilbronn proves
a finiteness result for various classes of cyclic fields. For us, the most important
part of Heilbronn’s result states:

Theorem 1.1 (Heilbronn, 1951). Given a prime `, there are only finitely many
norm-Euclidean Galois fields of degree `.

However, Heilbronn’s result on cyclic fields does not give an upper bound on the
discriminant, even in the cubic case. The case of Galois cubic fields is especially
interesting, as we have the following (see [9, 21, 10]):

Theorem 1.2 (Godwin & Smith, 1993). The norm-Euclidean Galois cubic fields
with discriminant |∆| < 108 are exactly those with

∆ = 72, 92, 132, 192, 312, 372, 432, 612, 672, 1032, 1092, 1272, 1572 .

Lemmermeyer has further verified that this list constitutes all fields with |∆| <
2.5 · 1011 (see [15]). We prove the following result, which gives an upper bound on
the discriminant for the fields considered in Theorem 1.1.

Theorem 1.3. Let ` be an odd prime. There exists computable constant C` such
that if K is a Galois number field of odd prime degree `, conductor f , and discrim-
inant ∆, which is norm-Euclidean, then f < C` and 0 < ∆ < C`−1

` .

2010 Mathematics Subject Classification. 11A05, 11L40, 11R16, 11R32, 11R80, 11Y40.
Key words and phrases. norm-Euclidean, cyclic fields, cubic fields, character sums.

1



2 KEVIN J. MCGOWN

` C`
3 1070

5 1078

7 1082

11 1088

13 1089

17 1092

19 1094

23 1096

` C`
29 1098

31 1099

37 10101

41 10102

43 10102

47 10103

53 10104

59 10105

` C`
61 10106

67 10107

71 10107

73 10108

79 10108

83 10109

89 10109

97 10110

Table 1.1. Values of C` for primes ` < 100

Although the results of the previous theorem represent a significant step forward,
the magnitude of the constants leaves something to be desired, especially if one
is interested in determining all such fields, for any fixed `. As is frequently the
case in estimates of number theoretic quantities, under the Generalized Riemann
Hypothesis (GRH) one should be able to obtain much sharper results. This is the
subject of a forthcoming paper (see [17]).

In order to prove Theorem 1.3, we derive explicit inequalities which guarantee the
failure of the norm-Euclidean property. Our inequalities (see Theorem 3.1) involve
the existence of small integers satisfying certain splitting and congruence conditions.
This also leads to an algorithm (see §6.2) for tabulating a list of candidate norm-
Euclidean Galois fields (of prime degree `) up to a given discriminant. We have
implemented this algorithm in the programming language C, thereby obtaining the
following result:

Theorem 1.4. The following table contains all possible norm-Euclidean Galois
number fields of prime degree ` and conductor f with 3 ≤ ` ≤ 30 and f ≤ 1010. (Of
course, some of these fields may not be norm-Euclidean.)

` f ≤ 1010

3 7, 9, 13, 19, 31, 37, 43, 61, 67, 73, 103, 109, 127, 157
5 11, 31, 41
7 29, 43
11 23, 67, 331
13 53, 131
17 137
19
23 47, 139
29 59

Table 1.2. Candidate norm-Euclidean fields of small degree

Amusingly, there are no norm-Euclidean Galois fields of degree 19 with f ≤ 1010.
Notice that when ` = 3, we cover all possible |∆| < 1020 (as ∆ = f2 in this case)
and that our results are consistent with Theorem 1.2. In the case of ` = 3, we
know that exactly 13 of the fields listed are norm-Euclidean, f = 73 being the only
spurious value (see [21]). In the case of ` = 5, Godwin (see [8]) proved that f = 11
is norm-Euclidean and Cerri (see [4]) has verified this. Nothing seems to be known
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about the remaining fields in the table. It would be interesting to study these fields
on a case-by-case basis to decide which among them are norm-Euclidean.1 No effort
has been made in this direction by the author, but this may be the subject of a
future investigation.

Combining Theorems 1.2, 1.3, and 1.4 leads to the following result which repre-
sents the current state of knowledge for norm-Euclidean Galois cubic fields:

Theorem 1.5. The Galois cubic fields with

∆ = 72, 92, 132, 192, 312, 372, 432, 612, 672, 1032, 1092, 1272, 1572

are norm-Euclidean, and any remaining norm-Euclidean Galois cubic field must
have discriminant ∆ = f2 with f ≡ 1 (mod 3) where f is a prime in the interval
(1010, 1070).

Finally, we mention that under the GRH we can significantly improve on the
above result (see [17]).

2. Preliminaries

2.1. The setup. Throughout this paper, K will denote a Galois number field of
odd prime degree `, conductor f , and discriminant ∆, which is necessarily cyclic.
By the conductor–discriminant formula, we have ∆ = f `−1.

Recall that via class field theory, there is a one-to-one correspondence between
cyclic extensions K/Q of conductor f and degree ` and cyclic groups 〈χ〉 of order
` generated by primitive Dirichlet characters χ of conductor f and order `. The
choice of χ amounts to the choice of a primitive `-th root of unity among the φ(`)
possibilities, and this correspondence is such that a rational prime p splits in K
if and only if χ(p) = 1. Unless otherwise specified, χ will always denote a (fixed)
character associated to K.

In establishing our results, it will be no restriction to assume that K has class
number one, and hence we will do so throughout. In this case, genus theory tells
us that either f is a prime with f ≡ 1 (mod `), or f = `2.

2.2. Heilbronn’s criterion. We set

N := NK/Q(OK) = {n ∈ Z | NK/Q(α) = n for some α ∈ OK} ,

P := {n ∈ Z | gcd(n, f) = 1 , x` ≡ n (mod f) is soluble} ,

and
S := {n ∈ P | 1 ≤ n < f , n /∈ N} .

Since K has class number one, an integer n 6= 0 lies in N if and only if ` divides
the p-adic valuation of n for all primes p which are inert in K (i.e., all primes p for
which χ(p) 6= 0, 1). It follows that

S = {n ∈ {1, . . . , f − 1} | n = bc, (b, c) = 1, χ(b) 6= 1, χ(bc) = 1} .

Although not stated in this way, Heilbronn proves the following [13]:

1Of course, to begin with, one could determine which have class number one.
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Lemma 2.1 (Heilbronn’s Criterion). Suppose (f, `) = 1. If one can write f = a+ b
with a, b > 0, where a, b /∈ N and a ∈ P, then K is not norm-Euclidean.

This simple yet ingenious observation, which has its roots in a paper of Erdös and
Ko on quadratic fields [6], turns the problem into one of additive number theory.
For the sake of completeness, we provide the argument.

Proof. Assume that K is norm-Euclidean. Suppose f = a+ b with a, b > 0 where
a, b /∈ N and a ∈ P. We seek a contradiction.

Since (f, `) = 1, we know that f is a prime, and since K has prime degree we
know that f is totally ramified in K. We factor f = uπ` in K where π is a first
degree prime and u is a unit. Fix an arbitrary n ∈ Z+. There exists α ∈ OK
such that n ≡ α (mod π) with |N(α)| < |N(π)| = f . Conjugation gives n ≡ ασ

(mod π) for all embeddings σ : K → C, and hence n` ≡ N(α) (mod f). Now
we choose n so that a ≡ n` (mod f) and we have a ≡ N(α) (mod f). Since
|N(α)| < f , we have either N(α) = a or N(α) = a− f = −b. Thus a or −b lies in
N , a contradiction! �

3. Conditions for the Failure of the Norm-Euclidean Property

Throughout this section, we assume that (f, `) = 1 so that K is not the field
with f = `2. Denote by q1 < q2 the two smallest rational primes that are inert in
K. Building on the work of Heilbronn, we prove the following theorem, which gives
various conditions under which K fails be norm-Euclidean.

Theorem 3.1. Suppose that there exists r ∈ Z+ with

(r, q1q2) = 1, χ(r) = χ(q2)−1,

such that any of the following conditions hold:
(1) rq2k 6≡ f (mod q21), k = 1, . . . , q1 − 1,

(q1 − 1)(q2r − 1) ≤ f
(2) q1 6= 2, 3, 3q1q2r log q1 < f
(3) q1 6= 2, 3, 7, 2.1 q1q2r log q1 < f
(4) q1 = 2, q2 6= 3, 3q2r < f
(5) q1 = 3, q2 6= 5, 5q2r < f

Then K is not norm-Euclidean.

The first condition in the above theorem places no restrictions on q1 or q2 but
requires congruence conditions which hold “most of the time”, although they can
be rather awkward to verify. The remaining conditions resulted from an effort to
remove these congruences.

Lemma 3.2. If there exists s ∈ S such that (q1, s) = 1 and (q1 − 1)(s − 1) ≤ f ,
then we can write f = us + vq1 with 0 < u < q1 and v > 0. If (q1, v) = 1 in this
expression, then K is not norm-Euclidean.

Proof. Choose u ∈ {0, . . . , q1−1} so that us ≡ f (mod q1) and set v = (f−us)/q1.
One checks that v ≥ −(q1 − 1)/q1 > −1 and hence v ≥ 0. However, since f is a
prime not equal to q1 and s is composite, we must have u, v > 0, lest we arrive at a
contradiction. Since u < q1, we have χ(p) = 1 for every prime p dividing u, and it
follows that us ∈ S. If it were the case that (q1, v) = 1, then we would have vq1 /∈ N
since q1 /∈ N ; in this case Lemma 2.1 implies that K is not norm-Euclidean. �
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Proposition 3.3. If there exists s ∈ S such that (s, q1) = 1,

sk 6≡ f (mod q21) , k = 1, . . . , q1 − 1 ,

(q1 − 1)(s− 1) ≤ f ,
then K is not norm-Euclidean.

Proof. By Lemma 3.2 we can write f = us + vq1 with 0 < u < q1, v > 0 and we
may assume q1 | v. This implies f ≡ us (mod q21), a contradiction. �

When q1 6= 2, 3, we can eliminate the congruence condition of Proposition 3.3,
but for a small price.

Proposition 3.4. Fix q1 6= 2, 3. Suppose there exists a constant 1 ≤ B ≤ 3 such
that for all u ∈ (0, q1) there exists a prime p0 < B log q1 with (p0, u) = 1. If there
exists s ∈ S such that (s, q1) = 1 and

Bq1s log q1 ≤ f ,

then K is not norm-Euclidean.

Proof. By Lemma 3.2 we can write f = us + vq1 with 0 < u < q1, v > 0 and we
may assume q1 | v. By our hypothesis, there exists a prime such that (p0, u) = 1 and
p0 < B log q1 for some B ∈ [1, 3]. In particular, we have p0 < q1 since 3 log q1 < q1
for q1 ≥ 5. Let n denote the smallest positive solution to the congruence

u+ nq1 ≡ 0 (mod p0) ,

so that 0 < n < p0. We claim that the expression

(3.1) f = (u+ nq1)s+ (v − ns)q1
is of the desired form (to which Lemma 2.1 applies). First we note that

u+ nq1 < q1 + (p0 − 1)q1 = p0q1 .

To see that both terms in (3.1) are positive we observe

(u+ nq1)s < p0q1s < Bq1s log q1 ≤ f .

Notice that every prime p dividing u+nq1 is less than q1, which says (u+nq1)s ∈ S,
as before. If it were the case that q1|v−ns, then we would have q1|s, a contradiction;
hence (q1, v − ns) = 1. Now Lemma 2.1 gives the result. �

Motivated by the previous proposition, we introduce the following lemma which
gives the existence of the constant B.

Lemma 3.5. Suppose q is prime and 0 < u < q. If q 6= 2, 3, then there exists a
prime p0 < 3 log q such that (p0, u) = 1. If q 6= 2, 3, 7, then there exists a prime
p0 < 2.1 log q such that (p0, u) = 1.

Proof. To show there exists a prime p0 ≤ x with (p0, u) = 1 it suffices to show∑
p≤x

log p > log u ,

as this implies the desired result. For any x ≥ 5 we have the inequality

(3.2)
∑
p≤x

log p >
x

2.1
,
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which is easily deduced from Corollary 3.16 of [20] with a small amount of compu-
tation.2 Using this fact together with the hypothesis that u < q, one sees that it
suffices to show

(3.3) log q ≤ x

2.1
.

This condition clearly holds when we set x = 2.1 log q. When q ≥ 11, we have
x ≥ 2.1 log 11 > 5, and the proof is complete. The cases of q = 5, 7 are done by
direct inspection. �
Proposition 3.6. Suppose q1 = 2, q2 6= 3. If there exists s ∈ S such that (q1, s) = 1
and 3s < f , then K is not norm-Euclidean.

Proof. By Lemma 3.2 we may assume f = s+ 2v with 2 | v. In this case, we write
f = 3s + 2(v − s). If it were the case that 2 | (v − s), then we would have 2 | s, a
contradiction. Also observe that χ(3) = 1 and hence 3s ∈ S. Finally, notice that
3s < f , which implies v − s > 0. �
Proposition 3.7. Suppose q1 = 3, q2 6= 5. If there exists s ∈ S such that (q1, s) = 1
and 5s < f , then K is not norm-Euclidean.

Proof. By Lemma 3.2 we may assume f = us + 3v with 0 < u < 3, v > 0,
and 3 | v. We treat separately the cases of u = 1 and u = 2. If u = 1, we have
f = s + 3v, which we rewrite as f = 4s + 3(v − s). Proceeding as before we find
this expression is of the desired form (since χ(2) = 1), provided 4s ≤ f . If u = 2,
we have f = 2s+ 3v, which we rewrite as f = 5s+ 3(v− s), which is of the desired
form (since χ(5) = 1), provided 5s < f . �

Now we are ready:

Proof of Theorem 3.1. If condition (1) holds, we apply Proposition 3.3 with
s = q2r. If either of conditions (2) or (3) hold, then we apply Proposition 3.4
with s = q2r and invoke Lemma 3.5. If conditions (4) or (5) hold, we apply
Propositions 3.6 or 3.7 respectively. �

4. The Wildly Ramified Case

In the previous section we assumed that (f, `) = 1, which was reasonable since
we were only neglecting at most one norm-Euclidean field for each `. In this section
we show that we were only neglecting one field in total!

Theorem 4.1. Let K be a Galois number field of odd prime degree ` > 3 and
conductor f . If K is norm-Euclidean, then f is a prime with f ≡ 1 (mod `).

Note that by Theorem 1.2 the Galois cubic field of conductor 9 is norm-Euclidean.
Apparently, Davenport was the first to establish the norm-Euclidean nature of this
field (see [5]). One amusing consequence of all this is the following: there is exactly
one wildly ramified norm-Euclidean Galois field of odd prime degree! In order to
prove Theorem 4.1 we first establish two lemmas.

Lemma 4.2 (Variant of Heilbronn’s Criterion). Suppose f = `2. If one can write
` = a+ b with a, b > 0 and a, b /∈ N , then K is not norm-Euclidean.

2In fact, one can demonstrate this using the elementary methods given in Ch. XXII of [12] to-
gether with an explicit version of Stirling’s formula if one is willing to do a little more computation.
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Proof. The proof is similar to that of Lemma 2.1. We factor ` = uπ` in K where
π is a first degree prime and u is a unit. There exists α ∈ OK such that a ≡ α
(mod π) with |N(α)| < |N(π)| = `. Conjugation gives a ≡ ασ (mod π) for all
embeddings σ : K → C, and hence a ≡ a` ≡ N(α) (mod `). Since |N(α)| < `,
we have either N(α) = a or N(α) = a − ` = −b. Thus a or −b lies in N , a
contradiction. �

Lemma 4.3. Suppose k ∈ Z with k ≥ 5. If n1, . . . , nk ∈ Z with 1 = n1 < n2 <
· · · < nk ≤ 2k, then #{ninj | 1 ≤ i, j ≤ k} ≥ 2k + 1 .

Proof. We prove the result by induction on k. One checks the base case of k = 5
by hand. For the inductive step, suppose we have 1 = n1 < n2 < · · · < nk ≤ 2k as
in the hypothesis, and that the result holds for any smaller value of k.

If nk 6= nk−1 + 1, then we have 1 = n1 < n2 < · · · < nk−1 ≤ 2(k − 1) and
we invoke the inductive hypothesis to obtain 2k − 1 products. Augmenting these
products with nk−1nk and nknk gives the desired 2k+1 products, which completes
the proof in this case.

If nk = nk−1 + 1, then the following 3k − 3 products are distinct:

n1n1, n2n1, . . . , nkn1,

n2nk−1, n3nk−1, . . . , nk−1nk−1,

n2nk, n3nk, . . . , nknk,

Since k ≥ 4, we know 3k − 3 ≥ 2k + 1 and thus the proof is complete. �
Proof of Theorem 4.1. Suppose f = `2 and ` 6= 3. We will ultimately invoke
Lemma 4.2 to show that K is not norm-Euclidean. For small values of ` we apply
the lemma directly; for ` = 5 we use the decomposition 2 + 3 = 5, and for ` = 7 we
use 2 + 5 = 7. Hence we may assume ` ≥ 11.

Let χ denote a primitive Dirichlet character modulo `2 of order ` so that for
primes p 6= ` we have that p splits in K iff χ(p) = 1 iff p ∈ N . Let T denote the
set of positive integers less than `2 which are coprime to `.

It suffices to show that ` = a+ b with a, b > 0 and a, b /∈ N . Suppose we cannot
accomplish this. Then for each a = 1, . . . , (`− 1)/2, one of {a, `− a} is a norm and
hence there are at least k := (`− 1)/2 norms in {1, . . . , `− 1}; say n1, . . . , nk ∈ N
where n1 = 1. Now Lemma 4.3 implies that there are at least ` norms in T . In
light of this, we have #{n ∈ T | χ(n) = 1} ≥ `, which is a clear contradiction as
the aforementioned set has ϕ(`2)/` = `− 1 elements. �

5. Discriminant Bounds

In light of Theorem 4.1 we may assume that f ≡ 1 (mod `), provided we stay
away from the cubic field with f = 9. Indeed, the reader will see that for any proof
in this section it will be no restriction to assume f > 9.

5.1. Some special cases. The goal in §5.1 is to prove the following proposition
which treats two very special cases. The purpose of this is two-fold: This will serve
as an illustration of the type of inequalities we seek; and, this will allow us to rid
ourselves of these two cases which are particularly troublesome.

Proposition 5.1. Denote by q1 < q2 the two smallest rational primes that are
inert in K. Suppose either of the following conditions hold:



8 KEVIN J. MCGOWN

(1) q1 = 2, q2 = 3,
72(`− 1)f1/2 log 4f + 35 ≤ f

(2) q1 = 3, q2 = 5,
507(`− 1)f1/2 log 9f + 448 ≤ f

Then K is not norm-Euclidean.

The above inequalities are completely explicit, and for fixed ` they hold beyond
some easily computed value of f . The following corollary is an example of the type
of discriminant bound we can obtain from Proposition 5.1.

Corollary 5.2. Suppose K is a norm-Euclidean Galois cubic field of conductor f .
If the primes 2 and 3 are inert in K, then f < 107.

First we prove a lemma about Dirichlet characters.

Lemma 5.3. Suppose χ is a Dirichlet character modulo m of order `. Fix an `-th
root of unity ζ. Let (?) be any property of integers. Suppose there are no integers
n ≤ x having property (?) such that χ(n) = ζ. Then

#{n < x | n has property (?) , (n,m) = 1} = −
`−1∑
k=1

ζ−k
∑?

n≤x

χk(n) ,

where
∑? means that the sum is taken only over those positive integers having

property (?).

Proof. Summing the identity

∑̀
k=1

ζ−kχk(n) =

{
` χ(n) = ζ

0 otherwise
.

over all n ≤ x satisfying (?) and isolating the trivial character from the resulting
expression gives the desired conclusion. �

Lemma 5.4. Let χ be a non-principal Dirichlet character modulo m ≥ 2 · 104, and
let p be a prime. For x > 0, we have∑

n<x
(n,p)=1

χ(n) ≤ 2
√
m logm.

Proof. Given that m ≥ 2 · 104, the explicit version of the Pólya–Vinogradov
inequality given in [1] implies that for for any y > 0, we have

(5.1)

∣∣∣∣∣∑
n<y

χ(n)

∣∣∣∣∣ ≤ m1/2 logm.

We write

(5.2)
∑
n<x

(n,p)=1

χ(n) =
∑
n<x

χ(n)− χ(p)
∑
n<x/p

χ(n) .

Applying the triangle inequality to (5.2) and invoking (5.1) twice gives the result. �
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Lemma 5.5. Suppose χ is a Dirichlet character modulo m. Suppose q ≥ 3 is
a positive integer, and let A be a subset of (Z/qZ)∗. Let (?) be any property of
integers. We have

∑
a∈A

∑?

n≤x
n≡a (q)

χ(n) ≤ φ(q)
2

max
ψ

mod q

∣∣∣∣∣∣
∑?

n≤x

(ψχ) (n)

∣∣∣∣∣∣ ,
where

∑? means that the sum is only taken over those positive integers n having
property (?).

Proof. Using the orthogonality relations for characters, we find

∑
a∈A

∑?

n≤x
n≡a (q)

χ(n) =
1

φ(q)

∑
ψ

mod q

(∑
a∈A

ψ(a)

)∑?

n≤x

(ψχ) (n)

 .

We now observe that

S(A) :=
1

φ(q)

∑
ψ

mod q

∑
a∈A

ψ(a) = 1− S(A) ,

where A := (Z/qZ)∗ \ A. Therefore |S(A)| ≤ #A ≤ φ(q)/2 if #A ≤ φ(q)/2 and
|S(A)| ≤ 1 + |S(A)| ≤ 1 + φ(q) − #A ≤ φ(q)/2 if #A ≥ φ(q)/2 + 1. The result
follows. �

Proof of Proposition 5.1. First suppose that q1 = 2 and q2 = 3. We will say
that n ∈ Z+ has property (?) if (6, n) = 1 and n 6≡ 3f (mod 4). By condition (1)
of Theorem 3.1, we must prove that there exists r ∈ Z+ satisfying condition (?)
with χ(r) = χ(3)−1 =: ζ such that 3r − 1 ≤ f . By way of contradiction, suppose
there are no positive integers n < x satisfying condition (?) with χ(n) = ζ. We will
choose x later, but for now, we assume 0 < x < f .

Applying Lemma 5.3 we have:

(5.3) #{n < x | n has property (?)} ≤ (`− 1) max
k=1,...,`−1

∣∣∣∣∣∑?

n<x

χk(n)

∣∣∣∣∣
First we estimate the quantity on the left-hand side of (5.3) from below. Observe
that:

#{n < x | n has property (?)} = #{n < x | n ≡ 3f + 2, 3f + 10 (mod 12)}

≥ x

6
− 2

Now we estimate the sum on the right-hand side of (5.3) from above. By Lemma 5.4
and Lemma 5.5, we have∣∣∣∣∣∑?

n<x

χk(n)

∣∣∣∣∣ ≤ max
ψ mod 4

∑
n<x

(3,n)=1

(ψχk)(n)

≤ 2(4f)1/2 log 4f .
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Putting everything together, we have
x

6
− 2 < 4(`− 1)f1/2 log 4f ,

which implies

x < 24(`− 1)f1/2 log 4f + 12 .

Hence there exists an r ∈ Z+ with χ(r) = ζ and

r ≤ 24(`− 1)f1/2 log 4f + 12 ,

lest we arrive at a contradiction. In light of this, to satisfy condition (1) of Theo-
rem 3.1, which reads 3r − 1 ≤ f in this case, it is enough to assume

3(24(`− 1)f1/2 log 4f + 12)− 1 ≤ f ,

which is true by hypothesis.
Now we treat the second case of q1 = 3 and q2 = 5. We only sketch the proof

as it is very similar to the first. This time, we will say that n ∈ Z+ has property
(?) if (15, n) = 1 and n 6≡ f, 2f (mod 9); we find that this holds exactly when
n belongs to one of 16 particular residue classes modulo 45. By condition (1) of
Theorem 3.1, we must prove that there exists r ∈ Z+ satisfying condition (?) with
χ(r) = χ(5)−1 =: ζ such that 10r − 2 ≤ f . By way of contradiction, suppose there
are no positive integers n < x satisfying condition (?) with χ(n) = ζ.

We find

#{n < x | n has property (?)} >
16x
45
− 16

and ∣∣∣∣∣∑?

n<x

χk(n)

∣∣∣∣∣ ≤ 3 max
ψ mod 9

∑
n<x

(5,n)=1

(ψχk)(n)

≤ 6(9f)1/2 log 9f .

Combining the above, using the same argument as before, we find

16
45
x < 18(`− 1)f1/2 log 9f + 16 .

Proceeding as before, we arrive at the desired result. �

5.2. Upper bounds on q1, q2, and r. Here we give bounds on the quantities q1,
q2, and r appearing in Theorem 3.1. First we quote the following result, which is
proved elsewhere:

Theorem 5.6. Let χ be a non-principal Dirichlet character modulo a prime p ≥
1019 having odd order. Suppose that q1 < q2 are the two smallest prime non-residues
of χ. Then we have:

(1) q1 < 3.9 p1/4 log p
(2) q2 < 53 p1/4(log p)2

(3) q1q2 < 24 p1/2(log p)2
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The bound on q1 above is due to Norton (see [19]), and the bounds on q2 and
the product q1q2 are due to the author (see [16]). In order to bound r, we will
use the character sum estimate (see Theorem 7.1) given in §7; however, we remark
that Theorem 5.6 gives a stronger bound for q1 and q2 than one would achieve via
Theorem 7.1.

Now we state and prove a result which gives an upper bound on r. Having
dealt with the two special cases in §5.1, we do not need to impose any additional
congruence conditions on r. Larger values of q1 lead to better constants, and so we
provide two sets of constants.

Proposition 5.7. Let χ be a non-principal Dirichlet character modulo f of order
` > 2, where f is a prime with f ≥ 2 · 104. Let q1 < q2 be primes. Fix an `-th root
of unity ζ, and k ∈ Z with k ≥ 2. There exists a computable positive constant D(k)
such that whenever f is large enough so that

(D(k)(`− 1))k (log f)
1
2 ≤ 4f

1
4 ,

there exists r ∈ Z+ such that (r, q1q2) = 1, χ(r) = ζ, and

r ≤ (D(k) (`− 1))k f
k+1
4k (log f)

1
2 .

k D1(k)
2 89.1550
3 43.1104
4 31.9985
5 26.9751
6 24.1129
7 22.2635
8 20.9692

k D1(k)
9 20.0133
10 19.2768
11 18.6920
12 18.2160
13 17.8211
14 17.4877
15 17.2028

Table 5.1. Values of
D(k) when 2 ≤ k ≤
15, with q1 arbitrary

k D2(k)
2 13.5958
3 6.6415
4 5.0420
5 4.3220
6 3.9103
7 3.6430
8 3.4550

k D2(k)
9 3.3154
10 3.2075
11 3.1215
12 3.0513
13 2.9929
14 2.9434
15 2.9011

Table 5.2. Values of
D(k) when 2 ≤ k ≤
15, assuming q1 > 100

Proof. Define the constant C(k) as in Theorem 7.1, and two more quantities which
depend on q1, q2, k:

K1 :=
(

1 + q
1/k−1
1

)(
1 + q

1/k−1
2

)
, K2 :=

(
1− q−1

1

) (
1− q−1

2

)
Fix a constant D(k) such that

D(k) ≥
K1

(
1 + C(k)−1

)
K2

C(k) .

We will show that Proposition 5.7 holds for this choice of D(k). Set

x := (D(k)(`− 1))k f
k+1
4k (log f)

1
2 ,

and suppose there are no positive integers n < x with (n, q1q2) = 1 and χ(n) = ζ.
We observe that x ≤ 4f

1
2+ 1

4k by hypothesis; in particular, we find x < 4f5/8 < f .
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Applying Lemma 5.3 we have:

(5.4) #{n < x | (n, q1q2) = 1} ≤ (`− 1) max
k=1,...,`−1

∣∣∣∣∣∣∣
∑
n<x

(n,q1q2)=1

χk(n)

∣∣∣∣∣∣∣
We bound the left-hand side of (5.4) from below:

#{n < x | (n, q1q2) = 1} > (1− q−1
1 )(1− q−1

2 )x− 2

Now we wish to bound the character sum on right-hand side of (5.4) from above.
We fix an arbitrary k ∈ {1, . . . , `−1}, and for notational convenience, we will write
ψ in place of χk. We have:∑

n<x
(n,q1q2)=1

ψ(n) =
∑
n<x

ψ(n)−ψ(q1)
∑

n<x/q1

ψ(n)−ψ(q2)
∑

n<x/q2

ψ(n)+ψ(q1q2)
∑

n<x/q1q2

ψ(n)

Now we apply the triangle inequality to the above and invoke Theorem 7.1 to bound
each term. This gives∣∣∣∣∣∣∣

∑
n<x

(n,q1q2)=1

ψ(n)

∣∣∣∣∣∣∣ ≤ C(k)
(

1 + q
1/k−1
1

)(
1 + q

1/k−1
2

)
x1−1/kf

k+1
4k2 (log f)

1
2k .

Combining everything, we have

K2 x < (`− 1)K1 C(k)x1− 1
k f

k+1
4k2 (log f)

1
2k + 2

≤ (`− 1)K1

(
1 + C(k)−1

)
C(k)x1− 1

k f
k+1
4k2 (log f)

1
2k ,

which leads to
x < (D(k)(`− 1))k f

k+1
4k (log f)

1
2 ,

a contradiction.3 �
5.3. The general case. Having paved the way, we are ready to prove the following
result from which Theorem 1.3 follows immediately.

Theorem 5.8. Fix an integer 2 ≤ k ≤ 8 and define E(k) as in Table 5.3. If

E(k)(`− 1)k(log f)
7
2 ≤ f 1

4−
1
4k ,

then K is not norm-Euclidean.

k E(k)
2 3.4936 · 103

3 5.5369 · 103

4 1.2215 · 104

5 2.8503 · 104

6 6.7566 · 104

7 1.6095 · 105

8 3.8375 · 105

Table 5.3. Values of E(k)

3Computation of the table of constants is routine. For the first set of constants, we use q1 ≥ 2,
q2 ≥ 3, and for the second set we use q1 ≥ 101, q2 ≥ 103.
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Proof of Theorem 1.3. If ` = 3, then set k = 5. If 3 < ` < 61, then set k = 4.
Otherwise set k = 3. Apply Theorem 5.8.4 �

We note in passing that we could derive a similar inequality to that given in
Theorem 5.8 for all k ≥ 2, but as these results will not improve our ultimate
discriminant bounds, we have opted to use the simplifying assumption of k ≤ 8.

Proof of Theorem 5.8. Our ultimate choice of E(k) will be such that E(k) ≥ 103.
Using this, together with k ≥ 2, ` ≥ 3, our hypothesis leads to the inequality
4 · 103(log f)

7
2 ≤ f 1

4 which easily implies f ≥ 1040. We adopt the notation from
the hypothesis of Theorem 3.1, and set ζ = χ(q2)−1.

For now we will assume q1 > 100. Using Theorem 3.1, we must show there exists
r ∈ Z+ such that (r, q1q2) = 1, χ(r) = ζ, which also satisfies the inequality

2.1 q1q2r log q1 ≤ f .
Using Theorem 5.6, we have q1q2 < 24 f1/2(log f)2 , and q1 < 3.9 f1/4 log f < f3/8,
which implies log q1 < (3/8) log f . Thus, we have

2.1 q1q2 log q1 < 18.9 f1/2(log f)3 .

Using Proposition 5.7 we obtain an integer r with the desired properties such that

r ≤ (D2(k) (`− 1))k f
k+1
4k (log f)

1
2 ,

provided

(5.5) (D2(k)(`− 1))k (log f)
1
2 ≤ 4f

1
4 .

We define the constant
E(k) := 18.9D2(k)k .

Combining everything, and using the hypothesis, we have the bound

2.1 q1q2r log q1 < E(k)(`− 1)k(log f)
7
2 f

3k+1
4k ≤ f .

It remains to verify (5.5), but having defined E(k), we easily verify that this con-
dition is automatic from our hypothesis as one has:

(D2(k)(`− 1))k (log f)
1
2 ≤ E(k)(`− 1)k(log f)

1
2

≤ f
1
4−

1
4k

(log f)3

< f
1
4

This completes the proof in the case that q1 > 100.
Now we consider what happens when q1 ≤ 100. Having dealt with two special

cases in §5.1, the remaining cases fall under conditions (2) through (5) of The-
orem 3.1. Namely, we must show there exists r ∈ Z+ such that (r, q1q2) = 1,
χ(r) = ζ, which also satisfies an additional inequality. We will prove the bound

(5.6) 932 q2r < f ,

which will establish the result in all cases; in particular, we observe that

(2.1)(97)(log 97) < 932 .

4Since any choice of k will give a discriminant bound, we merely test numerically the values
of k ∈ [2, 8] to see which choice gives the least exponent in the bound. It appears that after a

certain point, k = 2 will be the best choice.
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We apply Lemma 7 and Theorem 4 of [16] to find that q1 ≤ 100 implies
q2 < 711 p1/4 log p. Using Proposition 5.7 we obtain an integer r with the desired
properties such that

r ≤ (D1(k) (`− 1))k f
k+1
4k (log f)

1
2 ,

provided

(5.7) (D1(k)(`− 1))k (log f)
1
2 ≤ 4f

1
4 .

We obtain
932 q2r < E′(k)(`− 1)kf

1
2+ 1

4k (log f)
3
2 ,

where
E′(k) = (932)(711)D1(k)k .

To complete the proof, it suffices to show

(5.8) E′(k)(`− 1)kf
1
2+ 1

4k (log f)
3
2 ≤ f ,

as (5.8) implies both (5.6) and (5.7).
But one checks that (5.8) follows from our hypothesis provided

(5.9)
E′(k)
E(k)

≤ f1/4(log f)2 .

Finally, using the fact that f ≥ 1040 implies f1/4(log f)2 ≥ 1013, an easy numerical
computation shows that (5.9) holds for k = 2, . . . , 8. �

6. An Algorithm and Some Computations

In this section we give the algorithm to which we alluded in §1. In §6.1 we
give the main idea behind the algorithm, in §6.2 we give a full statement of the
algorithm, and in §6.3 we give some results obtained from our computations which
lead to the proof of Theorem 1.4.

6.1. Idea behind the algorithm. Let us first state our aims in designing such
an algorithm. The input should be an odd prime ` and positive integers A,B. If
we let F`(A,B) denote the collection of all Galois number fields K of degree ` with
conductor f ∈ [A,B], then the output should be a list L ⊂ [A,B] which contains
the conductors of all norm-Euclidean K ∈ F`(A,B). By Theorem 4.1, we only need
to consider fields where f is a prime with f ≡ 1 (mod `), except for the single field
where ` = 3 and f = 9.

We do not require our list to consist of only norm-Euclidean fields, but the
list should be manageable in the sense that we could eventually hope to treat
the remaining fields on a case-by-case basis. Our goal is to sift through a very
large amount of fields as quickly as possible. We will use the first condition from
Theorem 3.1 exclusively.

The basic strategy is as follows: compute χ(p) for primes p < f until we find the
smallest prime non-residues q1, q2 and a prime r with χ(r) = χ(q2)−1 satisfying
our congruences. If we are able to do this before we run out of primes, then we
simply check whether (q1−1)(q2r−1) ≤ f . Assuming any of the `-th roots of unity
are equally likely to occur, and that our congruences are satisfied at least half the
time, then an upper bound on the average number of character evaluations to find
q1, q2, r as just described is: `(2 + 2/(`− 1)).
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This gives a rough heuristic for how many character evaluations are necessary.
For example, when ` = 3, it should take almost 9 character evaluations on average
to prove that any given cubic field is not norm-Euclidean.5 However, it is important
to keep in mind that on occasion it may take many more character evaluations than
the average.

Finally, thanks to a comment from the referee, we note that we don’t actually
have to evaluate the characters! Indeed, χ(p) = 1 if and only if p(f−1)/` ≡ 1
(mod f) and χ(r) = χ(q2)−1 if and only if (rq2)(f−1)/` ≡ 1 (mod f). Thus these
conditions can be checked very quickly using fast modular exponentiation.

6.2. Statement of the algorithm. In the statement of Algorithm 1 below, a
lowercase or uppercase latin letter will denote an element of Z, and an uppercase
script letter will denote a list of elements in Z.

Algorithm 1 Output a list of all possible conductors f ∈ [A,B]

1: Generate a list P of all primes p ≤ max{1000,
√
B} using the Sieve of Eratos-

thenes.
2: Generate a list F all primes f ∈ [A,B] such that f ≡ 1 (mod `).
3: for f ∈ F do
4: e← (f − 1)/`
5: q1 ← 0; q2 ← 0; r ← 0
6: for p ∈ P do
7: if p ≥ f then
8: break
9: end if

10: if (pe 6≡ 1 (mod f)) then
11: if q1 = 0 then
12: q1 ← p
13: else if q2 = 0 then
14: q2 ← p
15: A ← {fk−1 mod q21 | k = 1, . . . , q1 − 1}
16: else if (pq2)e ≡ 1 (mod f) AND (pq2) mod q21 /∈ A then
17: r ← p
18: break
19: end if
20: end if
21: end for
22: if r = 0 OR (q1 − 1)(q2r − 1) > f then
23: print f
24: end if
25: end for
26: if ` = 3 AND 9 ∈ [A,B] then
27: print 9
28: end if

Verifying the correctness of Algorithm 1 is straightforward. For a given f , our al-
gorithm either finds q1, q2, and r satisfying the appropriate conditions or it doesn’t;

5A quick test using the range 100 ≤ f ≤ 300 yields an average of ≈ 8.7.
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if it doesn’t, then that value of f is outputted. However, we do give a number of
comments regarding the algorithm which we deem to be relevant:

(1) In line 1, the reason for the number 1000 is that if B is especially small, we
don’t want to run out of primes. Of course, the number 1000 is arbitrary –
any relatively manageable number will do.

(2) If we do run out of primes, the value of r will remain at zero when the loop
over P finishes. This will cause the relevant value of f to be output, and
so we need not worry about missing an f due to lack of primes, or due to
the non-existence of the value r for that matter.

(3) In calculating the list F in line 2, one should sieve using the primes in P –
this is why we stored primes up to

√
B.

(4) Lines 26 and 27 account for the “exceptional field” (see Theorem 4.1).

6.3. Results of the computations. We have implemented the algorithm in C,
using NTL with GMP for large integer arithmetic. Running our program on all
f ≤ 1010 gives the results in Table 6.1 below. The computation took 16.9 hours of
CPU time using a MacBook Pro with a 2.26 GHz Intel Core 2 Duo processor and
4 GB of RAM, running Mac OS 10.6.6

Using Heilbronn’s criterion (i.e., Lemma 2.1) directly on the fields in Table 6.1,
which takes less than a minute, allows us to pair it down a bit, thereby obtaining
Theorem 1.4. (For example, when ` = 5 the decomposition 431 = 145 + 286 makes
Lemma 2.1 applicable and allows us to eliminate this field.)

` f ≤ 1010

3 7, 9, 13, 19, 31, 37, 43, 61, 67, 73, 103, 109, 127, 157,
277, 439, 643, 997, 1597

5 11, 31, 41, 61, 71, 151, 311, 431
7 29, 43, 127, 239, 673, 701, 911
11 23, 67, 89, 331, 353, 419, 617
13 53, 79, 131, 157, 313, 443, 521, 937
17 137, 443, 1259, 2687
19 191, 229, 1103
23 47, 139, 277, 461, 599, 691, 967, 1013, 1289
29 59, 233, 523, 929, 2843, 3191

Table 6.1. Output of Algorithm 1

In the cubic case, we provide the values of q1, q2, r for the last 10 fields in our
computation:

f=9999999673, q1=5, q2=7, r=17
f=9999999679, q1=2, q2=3, r=19
f=9999999703, q1=2, q2=3, r=11
f=9999999727, q1=7, q2=11, r=19
f=9999999769, q1=3, q2=5, r=37
f=9999999781, q1=2, q2=5, r=7
f=9999999787, q1=3, q2=5, r=29
f=9999999817, q1=2, q2=3, r=13

6Running the algorithm on all f ≤ 104, which produces the same table, takes about 1 second!
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f=9999999943, q1=5, q2=7, r=19
f=9999999967, q1=5, q2=7, r=11

7. An Explicit Version of Burgess’ Character Sum Estimate

In this section, we prove an explicit version of a character sum estimate of Burgess
(see [3]), following a method due to Iwaniec (see [14] and [7]). Booker proves a
similar result when χ is quadratic (see [2]). The reader who is willing to accept
Theorem 7.1 may skip the rest of this section.

Theorem 7.1. Suppose χ is a non-principal Dirichlet character modulo a prime
p ≥ 2 · 104. Let N,H ∈ Z with H ≥ 1. Fix a positive integer r ≥ 2. Then there
exists a computable constant C(r) such that whenever H ≤ 4p

1
2+ 1

4r we have∣∣∣∣∣∣
∑

n∈(N,N+H]

χ(n)

∣∣∣∣∣∣ < C(r)H1− 1
r p

r+1
4r2 (log p)

1
2r .

Table 7.1. Values for the constant C(r) when 2 ≤ r ≤ 15:

r C(r)
2 10.0366
3 4.9539
4 3.6493
5 3.0356
6 2.6765
7 2.4400
8 2.2721

r C(r)
9 2.1467
10 2.0492
11 1.9712
12 1.9073
13 1.8540
14 1.8088
15 1.7700

We note in passing that the assumption H ≤ 4p
1
2+ 1

4r is of a technical nature.
However, it seems that to drop it, at least in the current proof, one may have to
accept the slightly worse exponent of 1/r on the log p term.

Throughout this section, χ will denote a Dirichlet character modulo an odd prime
p and N,H will be integers with 0 ≤ N < p and 1 ≤ H < p. The latter assumption
is justified as reducing N and H modulo p leaves the sum in the above theorem
unchanged. The letter r will denote a positive integer parameter with r ≥ 2. We
begin with some definitions.

Definition 7.2.
Sχ(H) :=

∑
n∈(N,N+H]

χ(n)

Definition 7.3.
E(H) := H1− 1

r p
r+1
4r2 (log p)

1
2r

We seek a bound of the form Sχ(H) < C E(H). (An explicit way of choosing C
will appear in the statement of Theorem 7.9.) It is plain that Sχ(H) also depends
upon N and that E(H) also depends upon p and r, but we have chosen to avoid
excess decoration of our notations.
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Definition 7.4. Fix A ∈ Z with 1 < A < p. For x ∈ Fp, we define νA(x) to be the
number of ways we can write

x ≡ an (mod p) ,

where a ∈ [1, A] is a prime and n ∈ (N,N +H] is an integer.

In the above definition and in the rest of this section a will denote a multiplicative
inverse of a modulo p. We note that νA(x) also depends upon N,H, p. Before
launching the main part of the proof, we will require a series of lemmas.

Lemma 7.5. Suppose |Sχ(H0)| ≤ C E(H0) for all H0 < H. Fix H0 = AB < H.
Then

|Sχ(H)| ≤ 1
π(A)B

∑
x∈Fp

νA(x)

∣∣∣∣∣∣
∑

1≤b≤B

χ(x+ b)

∣∣∣∣∣∣+ 2C E(H0) .

Proof. Applying a shift n 7→ n+ h with 1 ≤ h ≤ H0 gives

Sχ(H) =
∑

n∈(N,N+H]

χ(n+ h) + 2CθE(H0) .

(The letter θ will denote a complex number with |θ| ≤ 1, possibly different each
time it appears.) We set h = ab in the above, and average over all primes a ∈ [1, A]
and all integers b ∈ [1, B]. This gives

Sχ(H) =
1

π(A)B

′∑
a,b

∑
n∈(N,N+H]

χ(n+ ab) + 2CθE(H0) ,

where
∑′ here indicates that we are summing over all primes a ∈ [1, A] and all

integers b ∈ [1, B]. Rearranging the sum in the above expression yields
′∑
a,b

∑
n∈(N,N+H]

χ(n+ ab) =
∑

1≤a≤A
a prime

∑
n∈(N,N+H]

χ(a)
∑

1≤b≤B

χ(an+ b) ,

and hence ∣∣∣∣∣∣
′∑
a,b

∑
n∈(N,N+H]

χ(n+ ab)

∣∣∣∣∣∣ ≤
∑
x∈Fp

νA(x)

∣∣∣∣∣∣
∑

1≤b≤B

χ(x+ b)

∣∣∣∣∣∣ .
The result follows. �

Lemma 7.6. Suppose a1 6= a2 are prime and b ∈ Z. Then the number of integer
solutions (x, y) ∈ Z2 to the equation a1x − a2y = b with x, y ∈ (N,N + H] is at
most

H

max{a1, a2}
+ 1 .

Proof. Let Q denote the number of solutions to a1x−a2y = b with x, y ∈ (N,N +
H]. We will show Q ≤ H/a2+1. It will immediately follow from the same argument
that Q ≤ H/a1 + 1 as well; indeed, just multiply both sides of the equation by −1
and interchange the roles of x and y. Suppose we have two solutions (x, y) and
(x′, y′). It follows that a1(x− x′) = a2(y− y′), and since a1 6= a2 are prime, we see
that a2 divides x− x′ which implies |x− x′| ≥ a2. The result follows. �
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Lemma 7.7. Fix A ∈ Z with 1 < A < p. If 2AH ≤ p, then

∑
x∈Fp

νA(x)2 < π(A)H

1 +
2

π(A)

∑
a≤A

a prime

π(a)− 1
a

+
2

π(A)H

∑
a≤A

a prime

(π(a)− 1)

 .

Proof. Define S to be the set of all quadruples (a1, a2, n1, n2) with

a1n2 ≡ a2n1 (mod p)

where a1, a2 ∈ [1, A] are prime and n1, n2 ∈ (N,N + H] are integers. We observe
that #S =

∑
x∈Fp

νA(x)2. Suppose (a1, a2, n1, n2) ∈ S with a1 = a2. Then we
have n1 ≡ n2 (mod p) and hence n1 = n2 since n1, n2 ∈ (N,N + H] and H ≤ p.
Thus there are exactly π(A)H solutions of this form.

Now we treat the remaining cases. Let (a1, a2, n1, n2) ∈ S with a1 6= a2. Then
a1n2 − a2n1 = kp for some k. Writing n1 = N + h1 and n2 = N + h2 with
0 < h1, h2 ≤ H, we have

k =
a1(N + h2)− a2(N + h1)

p

=
a1 − a2

p
N +

a1h2 − a2h1

p

=
a1 − a2

p

(
N +

H

2

)
+
a1(h2 −H/2)− a2(h1 −H/2)

p
,

which gives∣∣∣∣k − (a1 − a2

p

)(
N +

H

2

)∣∣∣∣ < (a1 + a2)H
2p

≤ AH

p
≤ 1

2
.

This implies that a1 and a2 determine k. Now Lemma 7.6 tells us that there are at
most

H

max{a1, a2}
+ 1

choices of (n1, n2) for each fixed (a1, a2). Thus the number of elements in S with
a1 6= a2 is bounded above by

2
∑
a2≤A
a2 prime

∑
a1<a2
a1 prime

(
H

a2
+ 1
)

< 2H
∑
a≤A
a prime

π(a)− 1
a

+ 2
∑
a≤A
a prime

(π(a)− 1) .

This gives the result. �
The next estimate is very weak, but has the advantage that it holds for all X.

Lemma 7.8. For X ∈ Z+ we have
1

π(X)

∑
a≤X
a prime

π(a)− 1
a

<
1
3
.

Proof. The result holds for X ≤ 100 by direct computation. Using the Sieve of
Eratosthenes, one easily shows that

π(n)− 1
n

≤ 1
3
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for all n ≥ 100. The result follows. �
Now we are ready to state and prove what is essentially the main result of this

section, from which Theorem 7.1 follows.

Theorem 7.9. Suppose χ is a non-principal Dirichlet character modulo an odd
prime p. Fix a positive integer r ≥ 2. Suppose d > 4, C ≥ 1, p0 ≥ 2 are real
constants satisfying

(7.1) Crp
1
4−

1
4r

0 (log p0)
1
2 ≥ 4d(d+ 1)r

and

(7.2) C ≥ ((d+ 1)(2r − 1)(4r − 1))
1
2r(

1− 2

d1−
1
r

) .

If
H ≤

√
rd p

1
2+ 1

4r ,

then for p ≥ p0 we have
|Sχ(H)| ≤ C E(H) .

Proof. We may assume
H ≥ Crp 1

4+ 1
4r (log p)

1
2 ,

or else the result follows from the trivial bound |Sχ(H)| ≤ H. We will prove the
result by induction on H. We assume that |Sχ(H0)| ≤ CE(H0) for all H0 < H.
We choose an integer H0 with

H

d+ 1
< H0 ≤

H

d
,

for which we can write H0 = AB with A,B ∈ Z+, where

B = b4rp 1
2r c .

Accomplishing this is possible provided

H ≥ 4d(d+ 1)rp
1
2r ;

given our a priori lower bound on H, this condition follows from (7.1).
Before proceeding further, we give upper and lower bounds on A. Observe that

A ≤ H

dB
≤
√
rd p

1
2+ 1

4r

3drp
1
2r

=
1

3
√
rd
p

1
2−

1
4r .

We also have

A >
H

(d+ 1)B
≥ Crp

1
4+ 1

4r (log p)
1
2

(d+ 1)4rp
1
2r

=
Crp

1
4−

1
4r (log p)

1
2

4(d+ 1)r
.

In particular, using (7.1), we see that A > d > 4.
Applying Lemma 7.5 and our inductive hypothesis, we have

|Sχ(H)| ≤ 1
π(A)B

∑
x∈Fp

νA(x)

∣∣∣∣∣∣
∑

1≤b≤B

χ(x+ b)

∣∣∣∣∣∣+ 2C E(H0)

≤ 1
π(A)B

∑
x∈Fp

νA(x)

∣∣∣∣∣∣
∑

1≤b≤B

χ(x+ b)

∣∣∣∣∣∣+
2C
d1− 1

r

E(H) .(7.3)
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In order to bound the sum above, we apply Hölder’s inequality to the functions
νA(x)1−

1
r , νA(x)

1
r , and

∣∣∣∑1≤b≤B χ(x+ b)
∣∣∣ using the Hölder exponents (1− 1/r)−1,

2r, and 2r respectively; this yields:

∑
x∈Fp

νA(x)

∣∣∣∣∣∣
∑

1≤b≤B

χ(x+ b)

∣∣∣∣∣∣
≤

∑
x∈Fp

νA(x)

1− 1
r
∑
x∈Fp

νA(x)2

 1
2r

∑
x∈Fp

∣∣∣∣∣∣
∑

1≤b≤B

χ(x+ b)

∣∣∣∣∣∣
2r


1
2r

We bound each of the three sums above in turn. Clearly, one has∑
x∈Fp

νA(x) = π(A)H .

We will shortly apply Lemma 7.7 to show that

(7.4)
∑
x∈Fp

νA(x)2 ≤ 2π(A)H ,

but first we need to make a few estimates which involve the relevant quantities.
Our upper bound on A allows us to verify that 2AH < p, which makes Lemma 7.7

applicable. Lemma 7.8 gives

2
π(A)

∑
a≤A
a prime

π(a)− 1
a

<
2
3
.

Using (3.6) of [20], we have π(A) ≤ 1.26A/ logA for A > 1 and therefore

π(A)
H
≤ 1.26A
H logA

≤ 1.26
dB logA

≤ 1.26
d(4r − 1) logA

≤ 1.26
4(4 · 2− 1) log 4

< 0.1 .

Now we see that

2
π(A)H

∑
a≤A
a prime

(π(a)− 1) ≤ 2π(A)
H

< 0.2 .

Putting all this together, we have successfully verified (7.4) by invoking Lemma 7.7.
To bound the third sum, we apply Lemma 2.2 of [18]; this gives

∑
x∈Fp

∣∣∣∣∣∣
∑

1≤b≤B

χ(x+ b)

∣∣∣∣∣∣
2r

≤ B2rp1/2

[
1
4

(
4r
B

)r
p1/2 + (2r − 1)

]
.

Notice that B + 1 > 4rp
1
2r , and, in particular, since B ∈ Z we have B ≥ 4r. By

a convexity argument one sees that r ≤ B log 2 implies (B + 1)r ≤ 2Br. (Indeed,
this follows immediately using the inequality r log(1 + 1/B) ≤ r/B ≤ log 2.)

Using all this, we have

1
2

(
4r
B

)r
≤
(

4r
B + 1

)r
≤ 1
p1/2

,
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and hence ∑
x∈Fp

∣∣∣∣∣∣
∑

1≤b≤B

χ(x+ b)

∣∣∣∣∣∣
2r

≤ B2rp1/2

(
2r − 1

2

)
.

All together, this gives

∑
x∈Fp

νA(x)

∣∣∣∣∣∣
∑

1≤b≤B

χ(x+ b)

∣∣∣∣∣∣ ≤ D1 π(A)1−
1
2rH1− 1

2rBp
1
4r

with

D1 = 2
1
2r

(
2r − 1

2

) 1
2r

= (4r − 1)
1
2r .

Therefore

1
π(A)B

∑
x∈Fp

νA(x)

∣∣∣∣∣∣
∑

1≤b≤B

χ(x+ b)

∣∣∣∣∣∣ ≤ D1H
1− 1

r p
1
4r

(
H

π(A)

) 1
2r

.

Using (3.5) of [20] and some simple computation, provided A ≥ 3 and A ∈ Z,
we have π(A) ≥ A/(1 + logA); using this, together with the bound

logA ≤
(

1
2
− 1

4r

)
log p− log(3

√
rd)

<

(
1
2
− 1

4r

)
log p− 1 ,

allows us to estimate
H

π(A)
≤ H(logA+ 1)

A
≤ (d+ 1)B(logA+ 1) ≤ 4r(d+ 1)

(
1
2
− 1

4r

)
p

1
2r log p .

Therefore (
H

π(A)

) 1
2r

≤ D2 p
1

4r2 (log p)
1
2r

with

D2 =
[
4r(d+ 1)

(
1
2
− 1

4r

)] 1
2r

= ((d+ 1)(2r − 1))
1
2r ,

which leads to

1
π(A)B

∑
x∈Fp

νA(x)

∣∣∣∣∣∣
∑

1≤b≤B

χ(x+ b)

∣∣∣∣∣∣ ≤ D1D2H
1− 1

r p
r+1
4r2 (log p)

1
2r = D1D2E(H) .

Finally, using (7.3), this gives

|Sχ(H)| ≤
[
((d+ 1)(2r − 1)(4r − 1))

1
2r +

2C
d1− 1

r

]
E(H) .

Now we see that |Sχ(H)| ≤ C E(H), which would complete our induction, provided

(7.5) ((d+ 1)(2r − 1)(4r − 1))
1
2r +

2C
d1− 1

r

≤ C .

Using the fact

d > 4 =⇒ 1− 2
d1− 1

r

> 0 ,



NORM-EUCLIDEAN CYCLIC FIELDS OF PRIME DEGREE 23

and solving (7.5) for C allows us to see that (7.5) is equivalent to (7.2). �
Proof of Theorem 7.1. We apply Theorem 7.9 with d = 11, p0 = 2 · 104 and
perform the necessary numerical computations, being careful to round up in our
computations of values for C(r). �

The choices of p0 and d in the proof of Theorem 7.1 were designed to easily derive
a widely applicable version of the character sum estimate with decent constants for
all r. This will suit our purposes here. However, if one wanted to achieve a slightly
better constant for a specific application, one would proceed as follows: for any given
r and p0, choose (or numerically estimate) the parameter d so as to minimize C.
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