NORM-EUCLIDEAN GALOIS FIELDS AND THE
GENERALIZED RIEMANN HYPOTHESIS

KEVIN J. MCGOWN

ABSTRACT. Assuming the Generalized Riemann Hypothesis (GRH), we show
that the norm-Euclidean Galois cubic fields are exactly those with discriminant
A =172,9% 13%2,192,312,372,432%,612,67%,103%,1092, 1272, 1572 .

A large part of the proof is in establishing the following more general result:
Let K be a Galois number field of odd prime degree £ and conductor f. Assume

the GRH for (i (s). If
38(¢ — 1)*(log f)® loglog f < f,

then K is not norm-Euclidean.

1. INTRODUCTION

Let K be a number field with ring of integers Ok, and denote by N = Ng g
the absolute norm map. For brevity, we will sometimes use the term field to mean
a number field. We call a number field K norm-Euclidean if for every «, 8 € Ok,
B # 0, there exists v € Ok such that |[N(a —v8)| < |[N(8)|. In the quadratic
setting, it is known that there are only finitely many norm-Euclidean fields and
they have been identified; namely, a number field of the form K = Q(\/ﬁ) with d
squarefree is norm-Euclidean if and only if

d=-1,-2,-3,-7,—-11,2,3,5,6,7,11,13,17,19, 21, 29, 33, 37,41, 57,73 .
The main goal of this paper is to prove the following:

Theorem 1.1. Assuming the GRH, the norm-FEuclidean Galois cubic fields are
exactly those with discriminant

A =72,92 132 192 312,372, 432,612, 67%,1032%,1092, 1272, 1572 .

For most of this paper, the reader may take the Generalized Riemann Hypothesis
(GRH) to mean that for every Dirichlet L-function L(s, x), all the zeros of L(s, x)
in the critical strip 0 < R(s) < 1 are on the critical line R(s) = 1/2.! The only
exceptions will be when we explicitly state which function is being referred to —
i.e., “the GRH for L(s, x)” or “the GRH for (x(s)”.

Previously, Heilbronn (see [5]) showed that there are finitely many norm-Euclidean
Galois cubic fields, but produced no upper bound on the discriminant. Godwin and
Smith (see [4]) showed that the Galois cubic fields with |A| < 10® are exactly those
listed in Theorem 1.1 and were the first to give this list. Lemmermeyer subsequently
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1Actually, for Theorem 1.1, it suffices to assume the Riemann Hypothesis (RH) and the GRH
for Dirichlet L-functions associated to cubic characters.
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extended this result to show that Godwin and Smith’s list includes all fields with
|A| < 2.5-10 (see [9]). Although it is the natural question, no one seems to have
conjectured that this is the complete list; however, in light of Theorem 1.1, this
now seems like a very reasonable conjecture!

In a recent paper (see [10]) the author proved the following unconditional result:

Theorem 1.2. The fields listed in Theorem 1.1 are norm-FEuclidean, and any re-
maining norm-Euclidean Galois cubic field must have discriminant A = f? with
f =1 (mod 3) where f is a prime in the interval (10*°, 107).

A large part of the proof of Theorems 1.1 and 1.2 is in giving an upper bound on
the discriminant for the class of fields in question. Our technique works not only
in the case of Galois cubic fields, but for Galois fields of odd prime degree.

Theorem 1.3. Let ¢ be an odd prime. There exists a computable constant Cy
such that if K is a Galois number field of odd prime degree £, conductor f, and
discriminant A, which is norm-Euclidean, then f < Cp and 0 < A < C’g_l.

¢ 1 C AN ¢ C

3 107 29 [ 10%8 61 | 10108
5 | 1078 31| 109 67 | 10107
7 | 1082 37 | 10101 71 | 10107
11 | 1088 41 | 10102 73 | 10108
13 | 10%° 43 | 10102 79 | 10108
17 | 10°? 47 | 10103 83 | 10109
19 | 1094 53 | 10104 89 | 10199
23 | 109 59 | 10105 97 | 10110

TABLE 1.1. Values of C for primes £ < 100

¢ 1 C ¢ | Cy ¢ | Cy
3 [ 10! 20 [ 101° 61| 10™
5 | 102 31| 10 67 | 10'°
7 | 1013 37| 10%° 71 | 106
11 | 1013 41 | 10 73 | 1016
13 | 104 43 | 10'° 79 | 106
17 | 1014 47 | 10 83 | 106
19 | 104 53 | 1015 89 | 1016
23 | 1014 59 | 1015 97 | 1016

TABLE 1.2. Values of Cy for primes ¢ < 100, assuming the GRH

In [10], the author proved Theorem 1.3 and gave the constants in Table 1.1. In
this paper, we show that under the GRH these constants can be improved to those
given in Table 1.2. In fact, we prove the following result which, after some easy
computation, completely justifies Table 1.2.
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Theorem 1.4. Let K be a Galois number field of odd prime degree £ and conductor
f. Assume the GRH for Cx(s), the Dedekind zeta function of K.? If

38(¢ —1)*(log f)"loglog f < f,

then K is not norm-FEuclidean.

2. PRELIMINARIES

As is customary, we write ((s) to denote the Riemann zeta function, L(s, x) to
denote the Dirichlet L-function associated to a Dirichlet character x, and (x(s) to
denote the Dedekind zeta function associated to a number field K. The following
is well-known and is an easy consequence of Theorem 8.6 of [12].

Lemma 2.1. Let K be a Galois number field of odd prime degree ¢ and conductor
f, and let x be a primitive Dirichlet character modulo f of order €. Then

-1
Caels) = C(s) TT Lsix).
k=1

We now quote three results from [10] which will be crucial for our arguments.

Theorem 2.2. Let K be a Galois number field of odd prime degree £, conductor
f, and discriminant A. If K is norm-Euclidean, then f is a prime with f = 1
(mod £) and A = f=1, except when K is the cubic field with f =9 and A = 81.

Theorem 2.3. Let K be a Galois number field of odd prime degree ¢ and conductor
f with (f,0) =1, and let x be a primitive Dirichlet character modulo f of order £.
Denote by 1 < q2 the two smallest rational primes that are inert in K. Suppose
that there exists r € Z1 with

(rqig2) =1, x(r) = x(g2) 7",
such that any of the following conditions hold:

(1) ra2k # f (mod ¢7), k=1,...,q1—1,
(@1 = D(gr—1) < f

q1 7é 2,3, 3Q1QQT IOg q1 < f

@ #2,3,7, 21qqerlogq < f
G1=2,q9#3, 3qr<f
@1=3,92#5, 5gr<f

Then K is not norm-FEuclidean.

2
3
4
5)

o —

(
(
(
(

Proposition 2.4. Let K be a Galois number field of odd prime degree £ and con-
ductor f. Denote by q1 < q2 the two smallest rational primes that are inert in K.
Suppose either of the following conditions hold:
(1) q1 = 27 q2 = 37
7200 —1)fY%logdf +35 < f
(2) q1 = 37 qo = 5;
507(¢ — 1) f/?log 9f +448 < f
Then K is not norm-Euclidean.

2Note that, in this context, the GRH (as defined above) implies the GRH for (i (s); this follows
from Lemma 2.1.
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3. GRH BounDS FOR NON-RESIDUES

In [2], Bach proves an explicit version of a theorem due to Ankeny (see [1])
regarding the least element outside of a given non-trivial subgroup of (Z/mZ)*. The
main idea behind Bach’s proof appears in [11], but to obtain explicit results there
are many details to work out; Bach uses a slightly different kernel and introduces
a parameter in order to achieve good numerical results. Using the tables in [2], we
obtain the following special case which is useful to us in the present context.

Theorem 3.1 (Bach, 1990). Assume the GRH. Let x be a non-principal ® Dirichlet
character modulo m > 108, and denote by q; the smallest prime such that x(q1) # 1.
Then

q1 < (1.17 logm — 6.36)2 .

We will follow Bach’s approach to give bounds on the quantities go and r ap-
pearing in Theorem 2.3. Although the following results undoubtably hold in more
generality, we will not hesitate to specialize to our situation when it affords us
certain technical conveniences.

Theorem 3.2. Let x be a non-principal Dirichlet character modulo m > 10° with
x(=1) = 1. Assume the RH and the GRH for L(s,x). Denote by q1 < qo the two
smallest primes such that x(q1), x(q2) # 1. Then

g2 < 2.5(logm)?.

Theorem 3.3. Let ¢ and f be odd primes with f > 10% and f =1 (mod f). Let
K be the Galois number field of degree £ and conductor f, and let x be a primitive
Dirichlet character modulo f of order £. Assume the GRH for Ck(s). If q1,q2 are
rational primes and w # 1 is an {-th root of unity, then there exists r € Z1 such
that (r,q1q2) = 1, x(r) = w, and

r < 2.5 —1)%(og f)?.

The remainder of §3 is devoted to proving Theorems 3.2 and 3.3. Although this
constitutes the bulk of the paper and is where the analytic techniques come into
play, the casual reader who is willing to accept these two results may skip the rest
of this section and proceed to §4.

In §3.1 we give some explicit formulas relating sums over prime powers to sums
over zeros of L-functions, and in §3.2 we give some GRH estimates for the sums
over zeros. Then in §3.3 and §3.4 we prove Theorems 3.2 and 3.3, respectively.

3.1. An explicit formula.

Lemma 3.4. Let x be a Dirichlet character modulo m. (Here we allow the possibil-
ity that x is the principal character or even that m =1.) Forx > 1 and a € (0,1),
we have

12 x5 Ll(s,x)

2mi Jo_joo (s +a)? L(s,Xx)

ds = 3" x(n)A(n)(n/z)* log(a/n).

n<x

3The principal character modulo m is the Dirichlet character x : Z — C induced by the trivial
character on (Z/mZ)*.
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Proof. This is Lemma 4.2 of [2]. We provide only a brief sketch here. We plug the

Dirichlet series
=3 x(n)A(n)n
n=1

into the left-hand side above and interchange the order of summation and integra-
tion. Next, we use the fact that for y > 0 one has

1 [2riee s d y %logy ify>1
— _J s =
271 Jy_ioo (s+a)? 0 otherwise

and the result follows. |l

Lemma 3.5. Let x be a non-principal primitive Dirichlet character modulo m with
x(—=1)=1. Forx > 1 and a € (0,1) we have

D X(mAm(n/2)"logla/n) = = > =) e @

n<x p of Ly

logz (L 1 /L
-—= (X (—a) = — (X)) (~a).
T L, % \ Ly

Proof. Formally, this follows immediately by evaluating the integral in Lemma 3.4
by residues. For more details, see Lemma 4.4 of [2]. Il

~—

Lemma 3.6. For z > 1 and a € (0,1) we have

7774

ZA )(n/x)*log(x/n) = [CESER Z (p+a Z TEEIE

n<x p of ¢ n:l

2z ()2 (¢ o

Proof. The proof is similar to the proof of the previous result. |l

For our bounds on ¢» and r, we will need to exclude certain primes from consid-
eration; this will require the following estimate:

Lemma 3.7. Let u € ZT. Then
> An)(n/x)"log(x/n) < w(u)(logx)?,

n<x
(nyu) >1
where w(u) denotes the number of distinct prime factors of .

Proof. If u = 1, the result is trivial. Suppose u = p{*...p{*. Then

[log,, =]

t
Z Z Z logpr < Zlogm = tlogz.

n<ax k=1 a=1
(n,u) >1

The result easily follows. ll
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3.2. Sums over zeros. In order to prove our results, we will need to bound the
sums over zeros appearing in Lemmas 3.5 and 3.6. Eventually we will take character
combinations of the formulas appearing in these lemmas as well, and so it will be
useful to bound the corresponding sum over all the zeros of the Dedekind zeta
function of a number field K.

Let K be a number field of discriminant A with r; real embeddings and 275
complex embeddings. We define

drcls) = "2 (2) +r22¢(3+1> Lk Qogr, w(s) = DO

2 2 2 2

where I'(s) is the usual gamma function. In particular,
1 s
= (v (5) ~1087) .
vals) =5 <¢ (2) o8

In order to expedite the proofs of this section, we quote some formulae, all of which
can be derived from (5.9) of [7]. For all s € C, we have:

; 1 1 1 1 1
a0 G mer 3 (T545) - aelsi Lo e

Cr (s) o 2 1
¢'(s) _ L W N SR
(3.2) o - B+p§<(5p+p> S~ 7 Yals)

If x is a non-principal primitive Dirichlet character modulo f, with
x(—1) =1, then for all s € C we have:

L'(s,x) 1 1 1
(33) T BX+,J;; (H+p>—210gf—¢@(5)

Each sum above is over the non-trivial zeros p of the corresponding functions, and
is absolutely and uniformly convergent on compact subsets of C. Henceforth we
adopt the notation that p will always denote a non-trivial zero with 0 < R(p) < 1.

Each of (3.1), (3.2), (3.3) involves a constant B which can be difficult to estimate.
Fortunately, in all three cases this constant can be eliminated from the equation as
follows. Provided the sum is taken in symmetric order?, one has

1
(3.4) B+ ) -=0,
pofc P

and similarly for Bx and B,. See [3] for a simple argument which gives this result
for the constant B. The corresponding result for Bx follows by a similar argument
and was first exploited by Stark to give lower bounds for discriminants (see [16, 17]).

The analogous result for B, is not obvious; in fact, it wasn’t known until the
introduction of the Weil formulas (see [18, 19]). Plugging s = 1 into (3.3) and
comparing against (2.3.1) of [6] gives a proof of this result. See [14, 15, 13] for
results regarding the use of explicit formulae to obtain discriminant bounds.

We begin with a lemma which goes back to Landau (see [8]).

4Taking the sum in symmetric order means: Z = Tlim Z
P —ee p=o+it
lt|<T
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Lemma 3.8. Let x be a primitive Dirichlet character modulo f with
x(=1) =1. Then for o € R, we have

1 1 L'(o,x)
p;x <J—p+0—p> 82 L(a, x) + 2alo)

Proof. We substitute s = ¢ into (3.3) and add the result to it’s conjugate. The
result now follows upon invoking the fact that

R BX+Z% =0. 11

p of Ly

Lemma 3.9. Let x be a non-principal primitive Dirichlet character modulo f with
x(—1) =1. Assume the RH and the GRH for L(s,x). For a € (0,1) we have

1 1 1 1
< 1 2| — + - 4 1)) .
Z |p+a|2_2a+1<0gf+ <a+1+a>+ Yela+ )>

p of ¢, Ly

Proof. We consider the following two formulae:

3 (1 + 1) = 2%53 +2 (i + 011) +2¢g(0)

p of ¢ =P =P

1 1 L'(o,
3 < + > — log f 4 20X on ()
Ly \o—p a=p L(o,x)

The second formula above is Lemma 3.8 and the first can be proved in exactly the
same manner. Setting 0 = a + 1 and supposing that R(p) = 1/2, we find:

1 1 1 1

3.5 =

(3:5) lp+ al? 2a—|—1(a—p+a—p>

To complete the proof, we combine everything above and note that

! L/

), pL@x)
(o) L(o,x)

by considering the Dirichlet series for (¢'/¢ + L} /Ly)(s). I

We give a special case of the previous lemma:

<0,

Lemma 3.10. Let x be a non-principal primitive Dirichlet character modulo f
with x(—1) = 1. Assume the RH and the GRH for L(s,x). We have

% < 1logf+0.437.
ot lptal 2
Proof. Use the fact

(3.6) ¥o(3/2) = —1.1153
and apply the previous lemma with a = 1/2. I

Having completed the desired estimates over the zeros of ((s) and L(s, x), we
turn turn to (x(s).
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Lemma 3.11. Let K be a number field with discriminant A. Then we have

> (1 + 01_p> = log|A| +2 C_ + 01_1) 2 (o) + 25519

T NT TP Cr(o)

Proof. This is exactly analogous to Lemma 3.8. il

Lemma 3.12. Let K be a number field with discriminant A. Suppose the GRH
holds for Ck(s). For a € (0,1) we have

1 1 1 1
—_— — |log|A]+2| —— 4+ — 2 1) .
p;ﬁ lp+ al? S %at1 {og I+ (a+1+a>+ Vrcla+ )]
of ¢k

Proof. Let 0 = a+1. Apply Lemma 3.11, use (3.5), and observe that (f (0)/Cx (o) <
0.1

We give a special case of the previous lemma:

Lemma 3.13. Let K be a totally real number field with discriminant A. Suppose
the GRH holds for Ck(s). We have

1 1 16
Z m <3 (loglAI + 3 +2¢g(3/2) [K : Q]) )
p of Ck 2

Proof. Since r; = [K : Q], ro = 0, we have ¢k (s) = [K : QJig(s) . The result now
follows from the previous lemma upon setting a = 1/2. I

Now we specialize even further to our situation:

Lemma 3.14. Let K be a totally real number field of degree ¢ and discriminant
A = f*=1. Suppose the GRH holds for (x(s). We have

1 1
Y, — =< (6= 1)log f—2.230+5.34] .
p of Ck |p+§’

Proof. We apply the previous lemma, using the approximation given in (3.6). |l

3.3. An upper estimate on ¢;. We establish a series of results, building up to
the proof of Theorem 3.2.

Lemma 3.15. Let x be a non-principal Dirichlet character modulo m with x(—1) = 1.
Fora € (0,1) and x > 0 we have

T 1 P P
@r1p2 @ p%% <p+a>2‘p% (h+ay?
+ Y (= x)AMm)(n/2) og(a/n)
X(Ln)<;f1

2 [(€) o ()
2 [(€) - (']

Proof. Subtract Lemma 3.5 from Lemma 3.6. |
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Lemma 3.16. Let x be a non-principal primitive Dirichlet character modulo f
with x(=1) = 1. For a € (0,1) we have

(§)-(2) e

1
< (a+2)p0§LX P +2

a+a+1+2

4’(2)‘ 11 3

Proof. We begin with the following formulas which hold for all s € C, provided
the sums are taken in symmetric order:

¢ _ LIRS DU SV
(3.7 ($)o - PO TR
L/
59) ()@ - 3 gl v

Formulas (3.7) and (3.8) are obtained from (3.2) and (3.3) respectively by applying
the facts 37, ;c p~' + B=0and 3 ., p '+ By = 0. Plugging s = 2 into
(3.7) and subtracting it from itself, and similarly for (3.8), yields:

(o= (9 s (- 55)

p

+3 - 0 Lh(2) — wls)
(2)0=(2) @+ (- 55 ) + el —vals)

Using the above, together with the fact
1 1 a—+2

—a—p 2—-p  (pt+a)2-p)’

we can write
(Sen- ()

1 1
S| D ga T 2 raep)

pof Ly pof ¢

(So-(Emedetets

The result follows upon taking absolute values and using the fact that

() el<|(t)e] o

Lemma 3.17. Suppose a € (0,1) and R(p) =1/2. Then
1 1

< .
[(p+a)2=p)| = lp+af?
Proof. Use [2—p| > |p+al. I

<
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Lemma 3.18. Let x be a non-principal primitive Dirichlet character modulo f

with x(=1) = 1. For a € (0,1) we have
C’)’ (L;)’ 1 1 1
2 ) (ma) = [ (-a)| < —_—
|<c Ca\z) OO 2 e e Gy

Proof. We start by differentiating (3.7) and (3.8); this gives

¢ L 1 L
s (S - p%jg S+ o )
X pof Ly

which allows us to write
<'>’ LAY
2) ca- () o
(¢ L
1

1 1
= X G 2GR @ G

pof ¢

The result follows. B

Proposition 3.19. Let x be a non-principal primitive Dirichlet character modulo
f with x(—=1) = 1. Assume the RH and the GRHfor L(s,x). We define

Z pofEC:L |P+2‘

For x > 0 we have

4 < Va2 Y AWm)(n/a) 2 log(a/n)
’ x(n

<z
)#1
logx 5 (2) 25 1 40
2 2 — i
o (3 2) (5 8)
Proof. Set a = 1/2. Combine Lemmas 3.15, 3.16, 3.17, and 3.18. i

Proof of Theorem 3.2. The result for a general character follows from the
corresponding result for primitive characters and hence we may assume x is a
primitive character modulo f.

Define z := 2.5(log f)2. Since f > 10%, we have x > 1073. By way of contradic-
tion, suppose that x(n) =1 for all n < x with (n,¢;) = 1. Under this assumption,
we apply Lemma 3.7 with u = ¢;, which gives

S A /a) log(e/n) < (log)?.
n<x

x(n) #1
Combining the above with Proposition 3.19 and dividing by /z yields

4 log )2 lox ¢'(2) 25 1 40
A e o i |

-
9/4

6
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By Lemma 3.10, we have

log f + 0.437,

DN | =

zpjs

and in particular,

Sl-
OJ.\ L

Ep:g

We see

and therefore

NZ2 2(logz)? logz |5 ¢'(2)
X< = 2
9/4 *zp:+ N 2zpz+ RO)
We have
1[5 ¢(2)
— | = 2 < 0.869
N [2 ;* ()
and
log
—= <0.214
VI T
which leads to
Vo1 2(log z)*
< 2] 4 e .186.
9/4_2ogf+0 37+ NG + 0.186
Now we observe
2(log 7)?
—~ 7 < 2098.
vroooT

All together, we have

N 1
~_ < 2 .61
o1 = 20gf—|—36

This leads to:

VT

IN

%(logf) +8.13
1.52 log f

IN

Squaring both sides yields
r <232 (log f)?,

a contradiction. |

g [25] 1[5~ 0] _ 1 (logr 25 1 140
x |6 z|& 9 TV \Vr 6 3 vz 9

|

<

4

X

)

11
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3.4. An upper estimate on r. We establish a series of results, building up to the
proof of Theorem 3.3.

Lemma 3.20. Let x be a non-principal Dirichlet character modulo a prime p of
order € with x(—1) = 1. Fiz any £-th root of unity w # 1. For a € (0,1) and
x € (1,p) we have

!/
1 CI I -1 . L;Ck
+— (c (—a)+> I (—a)
=1
Proof. First we note that x* for k = 1,...,¢ — 1 are all non-principal primitive

characters as y is a character modulo a prime p of order ¢; moreover, x‘(n) = 1 for
all n < x as x < p. Multiplying the identity

L
- _ )t x(n)=w
;w kxk(n) B {O otherwise
by

g(@,n) == A(n)(n/x)" log(x/n)

and summing over all n < x yields

4 —1
(3.11) Yowt=0, Y wr=-1.
k=1 k=1

The result follows. |
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Lemma 3.21. Let x be a non-principal Dirichlet character modulo a prime p of
order £ with x(—1) = 1. Fiz any £-th root of unity w # 1. For a € (0,1) we have

(§) e (7)o

1 C’(Q)‘ 1 1 3
<(a+2 +¢ +-+ +z,
DY rae— @@ | Ta Tari T
where the sum is taken over all non-trivial zeros p of L(s,x*) fork=1,... L.
Proof. Using (3.7), (3.8) and (3.11), we can write:
!/
(§) oz () o
I
- @Yt Y
— —p)

pofLX;C
— (L. 3 1
X
( ) +Z<ka> 2 a+1

The result follows in a similar manner as Lemma 3.16. |

Lemma 3.22. Let x be a non-principal Dirichlet character modulo a prime p of
order £ with x(—1) = 1. Fiz any £-th root of unity w # 1. For a € (0,1) we have

¢ STEIEAY RS S
‘() Z < >(“)|§¥|p+a|2+a2+<a+1>2’

where the sum is taken over all non-trivial zeros p of L(s,x*) fork=1,... /.

Proof. Using (3.9), (3.10), and (3.11) we can write

(i.) (—a) + Zi_jjw (i) (~a)

Proposition 3.23. Let ¢ and [ be odd primes with f =1 (mod ¢). Let K be the
Galois number field of degree £ and conductor f, and let x be a primitive Dirichlet
character modulo f of order £. Fiz any £-th root of unity w # 1. Suppose that the
GRH holds for Ck(s). We define

221

2
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where the sum is taken over all non-trivial zeros of (x(s). For x € (1, f) we have

+4 < VoY 4+ Y Am)(n/z)/?log(z/n)

B2
logz (5 ¢(2)] 25 1 40
- l — — — .
+\/5<2§p:+ IR R Ep:+9
Proof. In light of Lemma 2.1, Zp can also be thought of as the sum over the
non-trivial zeros of L(s,x*) for k = 1,...,¢ (counting multiplicities). Observe that

since ¢ is odd, we have x(—1) = 1. Now set a = 1/2 and combine Lemmas 3.20,
3.21, 3.17, 3.22. 1

Proof of Theorem 3.3. Define z := 2.5(¢/ —1)2(log f)?. Since f > 10% and ¢ > 3,
we have x > 3393. By way of contradiction, suppose that x(n) # w for all n < x
with (n,q1g2) = 1. Under this assumption we apply Lemma 3.7 with u = ¢1¢2,
which gives

o
9/4

Z A(n)(n/x)?1og(z/n) < 2(logx)?.

n<x
x(n) =w

Combining the above with Proposition 3.23 and dividing by /z yields:
\/E 20( log x log x 1 40
L tesn S| 2] s

We note that Lemma 3.14 is applicable in our situation; indeed, our assumptions
on K imply that it is totally-real and, using the conductor-discriminant formula,
we see that A = f~1. By Lemma 3.14, we have

’2 25
6

Z< (¢ —1)log f —2.230 +5.34] ,

and in particular,

We see
logx |25 1 40 1 logx 25 1 1 40 4
x {6]4—33 zp:+9 x(\/af +2\/ \f9><\/§’

and therefore

VT 20(logz)*> logz |5 ¢'(2)
ﬂ§;+ N [2Z+€ C(2)H.
We have
L 15 ¢'(2)
= [Q;M o) H <0.82
and
gz _ 1y,
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which leads to

Ve 1 2((log )?

— < —[({-=1)1 —2.23/4 B4+ ————— 12,

9/472[( )log f 30+ 5.34] + NG +0
Now we observe

2
M < 227¢.
N3
All together, we have
Sﬁ < % [(¢—1)log f — 2.23¢+ 5.34] + 2.27¢ + 0.12
1
< 5(6 —1)(log f) + 1.16¢ + 2.79
This leads to:
9
Vo < g(z —1)(log f) +2.61¢ 4+ 6.28
< 1510 —1)log f

Squaring both sides yields
r <230 —1)*(log f)?,

a contradiction. |

4. GRH BounDs FOR NORM-EUCLIDEAN FIELDS

In this section we prove Theorem 1.4. First we deal separately with the situation
where ¢; is small.

Theorem 4.1. Let K be a Galois number field of odd prime degree ¢ and conductor
f. Assume the GRH for (i (s). Let ¢1 denote the smallest rational prime which is
inert in K. If @ < 100 and

5825(¢ — 1)?(log f)* < f,
then K is not norm-FEuclidean.
Proof. Set A = 5825. Ome checks that our hypothesis implies f > 10°. By
Theorem 2.2 we may assume that f is a prime with f =1 (mod ¢). We adopt the

notation from the statement of Theorem 2.3. Since ¢; < 100, we have ¢; < 97, and
by Theorems 3.2 and 3.3, we have

(4.1) @ < 25(logf)?,
(4.2) ro< 2.5(0—1)2(og f)?;
hence we have
21qigerlogqr < (2.1)(97)(2.5)(log £)2(2.5)(¢ — 1)?(log f)*(log 97)
< Al —1)*(log f)*.

If g1 # 2,3,7, then it follows from Theorem 2.3 that the condition given in our
hypothesis is sufficient. If ¢; = 7, then we observe that

3qugzrlogaqr < (3)(7)(2.5)(log f)*(2.5)(¢ — 1)*(log f)*(log 7)
< Al —1)*(log f)*.
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Now we deal with the special case where ¢; = 2, g2 = 3. Our hypothesis gives

1 fl/2
(-1)<—= 5 -
VA (log f)
In order to use Proposition 2.4, we estimate
72 logdf
720 — 1) f/? log4f + 35 — f+35
(t=1) VA (log f)?
< 0.1f+35
< [

thus the proposition applies. When ¢; = 3, g2 = 5, we use a similar estimate to
conclude that

507(0 — 1) Y% log 9f + 448 < 0.Af + 448 < f,

and hence Proposition 2.4 applies again.
The remaining cases fall under conditions (4) and (5) of Theorem 2.3. We will
prove the bound

5Q2r<f7

which will deal with all remaining cases. From the estimates (4.1) and (4.2) we
have

5qor < 32(€ —1)*(log f)* < A(¢ —1)*(log f)* < f .

This completes the proof. |l
Applying the previous theorem with ¢ = 3 yields:

Corollary 4.2. Let K be a Galois cubic number field with conductor
f>6-10° Assume the GRH for (x(s). Let q1 denote the smallest rational prime
which is inert in K. If g1 < 100, then K is not norm-Fuclidean.

Proof of Theorem 1.4. One checks that our hypothesis implies f > 10'°. By
Theorem 2.2 we may assume that f is a prime with f =1 (mod ¢). We adopt the
notation from Theorem 2.3. Applying Theorems 3.1, 3.2, and 3.3, we have:

¢ < (L17log f — 6.3)
(4.3) g2 < 25(log f)?
(4.4) r < 25(0-1)%(log f)?

For the moment, we assume ¢; # 2,3,7. Combining everything, this gives

2.1 qigerlogqr < 26.25(¢ — 1)%(1.17log f — 6.3)?log(1.17log f — 6.3)(log £)*.
Hence a sufficient condition is:
(4.5) 26.25(¢ — 1)*(1.171log f — 6.3)*log(1.17log f — 6.3)(log f)* < f

Note that the condition given in our hypothesis implies (4.5). To deal with the
remaining cases of ¢; = 2,3, 7, we note that (4.5) implies the condition given in the
statement of Theorem 4.1; hence (4.5) is sufficient in all cases. il
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5. GALols CuBIC FIELDS

Finally, we give the proof of Theorem 1.1. Let K be a norm-Euclidean Galois
cubic field with conductor f and discriminant A which is not any of the 13 fields
listed in the statement of Theorem 1.1. In light of Theorem 1.2, we may assume
f > 10'°. Moreover, Theorem 2.2 allows us to conclude that A = f? and that f is
a prime with f =1 (mod 3). Using the slightly complicated condition (4.5) in the
proof of Theorem 1.4 and setting ¢ = 3 we find that f < 7- 100,

It remains to deal with the cases where f lies in (10, 7-10%°). Let x be a
primitive cubic character modulo f, and let ¢; denote the smallest prime such
that x(¢q1) # 1. By Corollary 4.2, to show that K is not norm-Euclidean, assuming
f € (10t 7-1019), it suffices to show ¢; < 100. Using a computer program (written
in C) to carry out the computation, we obtain the following lemma which completes
the proof of Theorem 1.1.

Lemma 5.1. Suppose f is a prime with f =1 (mod 3). Let x be a cubic character
modulo f, and denote by q, the smallest prime with x(q1) # 1. If f < 7-1019, then
q < 61.

In our implementation we use NTL with GMP for large integer arithmetic. We
use the fact that x(p) = 1 if and only if p/=1/3 = 1 (mod f), as the latter
condition can be checked very quickly using fast modular exponentiation. The
computation was carried out on a MacBook Pro with a 2.26 GHz Intel Core 2 Duo
processor and 4 GB of RAM, running Mac OS 10.6. It took approximately 4 hours
of CPU time to complete.

As an additional curiosity we have kept a list of record values of ¢;. That is, each
time we encounter a value of ¢; which is strictly greater than all previous values,
we have outputted the values of f and ¢;. Here are the results:

Record: f=7, ql1=2

Record: f=31, q1=3

Record: £=307, ql1=5

Record: f=643, ql1=7

Record: £=5113, qi1=11
Record: £=21787, q1=13
Record: £=39199, q1=17
Record: £=360007, q1=23
Record: £=4775569, q1=29
Record: £=10318249, q1=37
Record: £=65139031, ql=41
Record: f=387453811, q1=43
Record: £=913900417, q1=47
Record: f=2278522747, q1=53
Record: £=2741702809, q1=59
Record: £=25147657981, ql=61
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